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ARTICLE INFO ABSTRACT

Keywords: Urban composition can be analyzed through spectral unmixing of images from airborne imaging spectrometers.
Spectral mixture analysis Unmixing given a spectral library can be accomplished by set-based methods or distribution-based methods. For
MESMA computational efficiency and optimal accuracy, set-based methods employ a library reduction procedure when
AVIRIS applied to large spectral libraries. On the other hand, distribution-based methods model the library by only a few
GMM . . . . . . .

NCM parameters, hence innately accept large libraries. A natural question arises that can distribution-based methods

with the original large spectral library achieve comparable performance to set-based methods in urban imagery.

In this study, we aim to investigate the unmixing capability of several distribution-based methods, Gaussian
mixture model (GMM), normal compositional model (NCM), and Beta compositional model (BCM) by comparing
them to set-based methods MESMA and alternate angle minimization (AAM). The data for validation were
collected by the AVIRIS sensor over the Santa Barbara region: two 16 m spatial resolution and two 4 m spatial
resolution images. 64 validated regions of interest (ROI) (180 m by 180 m) were used to assess estimate accu-
racy. Ground truth was obtained using 1 m images leading to the following 6 classes: turfgrass, non-photo-
synthetic vegetation (NPV), paved, roof, soil, and tree. Spectral libraries were built by manually identifying and
extracting pure spectra from both resolution images, resulting in 3287 spectra at 16 m and 15,426 spectra at 4 m.
The libraries were further reduced to 61 spectra at 16 m and 95 spectra at 4 m for set-based methods. The results
show that in terms of mean absolute error (MAE), GMM performed best among the distribution-based methods
while MESMA performed best among the set-based methods. For 16 m data, there is no significant difference
between GMM and MESMA (MAE = 0.069 vs. MAE = 0.074, p = 0.25). For 4m data, though GMM is not as
accurate as MESMA (MAE = 0.056 vs. MAE = 0.046, p = 7e — 5), it is better than AAM (MAE = 0.056 vs.
MAE = 0.065, p = 0.02) which is a re-implementation of MESMA. Further evidence on a reconstructed synthetic
dataset implies possible overfitting of the reduced library to the images for MESMA. These findings suggest that
the distribution-based method GMM could achieve comparable unmixing accuracy to set-based methods without
the need of library reduction, it may also be more stable across datasets, and the current 2-step workflow could
be replaced by a single model in applying a universal spectral library.1

1. Introduction fractions can be estimated from airborne or spaceborne hyperspectral

imagery (Van der Linden et al., 2019). Compared to color/panchro-

Global climate change and urbanization will bring many challenges
to our environment. Urban areas are a major source of greenhouse gas
emissions. To facilitate monitoring, management, development of
urban environment, land cover information is a prerequisite and used in
many physical models describing the urban ecosystem, such as climate
(De Ridder et al., 2015), energy and water flux (Wang et al., 1996). It is
also associated with urban heat island intensity (Zhou et al., 2017a),
which in turn impacts the urban resident health. Urban land cover
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matic imagery that shows similar reflectance between different urban
materials, imaging spectroscopy can measure the reflectance at narrow
bands covering visible, near infrared, and short wave infrared (VSWIR)
range, hence can differentiate materials with more subtle details
(Herold et al., 2004). Applying high spatial and spectral resolution
imagery for mapping urban vegetation and surfaces has been performed
before (Alonzo et al., 2013). However, accurate mapping through
classifying the acquired pixels requires a spatially fine-scale image,
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which is expensive to collect since it requires the airborne imaging
spectrometer to fly at a low altitude. For example, the airborne visible
infrared imaging spectrometer (AVIRIS) collects two types of images,
16 m spatial resolution at a 20 km altitude and 4 m spatial resolution at
a 4km altitude, between which only the 4 m data may be fine enough
for this task. Considering the difficulty of acquiring these airborne data
for multiple urban areas or time periods, a more applicable way is to
use an orbital imaging spectrometer to measure urban composition
globally and track changes over time.

Currently, several upcoming orbital imaging spectrometers are able
to achieve this goal, such as NASA's Hyperspectral Infrared Imager
(HyspIRI) (Lee et al., 2015), Germany's Environmental Mapping and
Analysis Program (EnMAP) (Guanter et al., 2015). They will sig-
nificantly increase the coverage range and revisit frequency of the same
sites, scaling up the current local case studies using infrequent hyper-
spectral measurements to a regional and global level. However, due to
their high altitude collection process and the tradeoff between spatial
and spectral details, data from these orbital spectrometers typically
have very low spatial resolutions (e.g. 30 m/pixel for HyspIRI and
EnMAP (Lee et al., 2015)). At such a coarse resolution, multiple ma-
terials can exist in a pixel and contribute to the measured spectrum, also
known as a mixed pixel (Small, 2001). From the spectra of these mixed
pixels, sub-pixel composition can be estimated by using spectral mix-
ture analysis (SMA), which tries to find the underlying constituting
material spectra (endmember) and their fractions (abundance). By un-
mixing these pixels to obtain their sub-pixel fractions, we can measure
and track urban composition globally, which can serve as input for
advanced ecosystem models.

1.1. Spectral mixture analysis

The most common SMA that relates endmembers and abundances to
a pixel relies on the linear mixing model (LMM), which assumes that the
reflectance measured within each pixel is a unique linear combination
of a fixed set of endmember spectra, weighted by their abundances, plus
some noise (Settle and Drake, 1993). The intuition behind this model is
that given a flat surface the fractional area of a material determines its
representation in the measured signal. There are two problems to this
model. First, spectral reflectance for identical materials can be highly
variable. For example, asphalt spectra can vary significantly based on
age, shadowing, and composite materials (Herold and Roberts, 2005).
This is called endmember variability, and it is caused by several extrinsic
factors and intrinsic factors, such as illumination, atmospheric condi-
tion, and measurement scales (objects or materials considered “pure”
may in reality be composed of materials at smaller scales) (Somers
et al., 2011; Zare and Ho, 2014). Second, multiple scattering and sha-
dowing exist inevitably due to topographic complexity in urban scenes,
which breaks the single scattering assumption in the LMM. To over-
come the second problem, we may introduce more complicated non-
linear models, such as bilinear models (Heylen et al., 2014). However,
the complexity in urban scenes makes accurate modeling of multiple
scattering a difficult task. On the other hand, if we allow the end-
member spectra to vary per pixel according to endmember variability,
we may mitigate these two problems simultaneously.

The first advantage of this scheme comes from the fact that end-
member is a hierarchical notion. For example, a tree is composed of
trunk, bark, leaf, and each of them can be called an endmember.
Similarly, roofs can contain metal chimneys, and pavements have cars,
pedestrians, etc. For any macroscopic object, it may be decomposed
into different levels of components, and each level can be seen as an
endmember. By defining endmembers as high level objects (e.g. tree,
roof, pavement), the nonlinear interaction of low level objects is treated
as endmember variability within this object hence ignored in the LMM.
Furthermore, the nonlinear interaction among these high level objects
(e.g. multiple scattering) can also be treated as endmember variability.
For example, consider a case where the light ray first hits the building
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or tree, then the ground, and finally received by the sensor. Since the
resulting pixel on a fine enough image still corresponds to the ground,
the effect of multiple scattering is ultimately incorporated into the
formation of the ground spectrum. Hence, considering endmember
variability, we assume that these high level objects still contribute to a
pixel spectrum in a linear way except that their spectra are altered ei-
ther intrinsically or extrinsically.
By modeling endmember variability, the LMM follows equation:

M
y, = Z mycty + Ny, n=1, .,N
j=1 (€]

where y, € R® is the spectrum of the nth pixel in the image (we use R®
to denote the B dimensional vector space hence y, € R® is short for y,
being a B dimensional vector), B is the number of bands, N is the
number of pixels, M is the number of endmembers. m,; € R? is the jth
endmember for the nth pixel. a,;€R is the abundance that usually
satisfies the positivity and sum-to-one constraints, i.e. a,; = 0, T, = 1.
Finally, we have some additive noise n,. A direct observation of Eq. (1)
is that the more sparse the abundances, the more confident we are
about the validity of the model since in the extreme case when there is
only 1 endmember in the pixel, the equation always holds (@ = 1 for
some k and a,; = 0 for j = k).

When it comes to unmixing in terms of (1), we are referring to re-
trieving {my), @} from {y,}, or {a,;} from {y,} and a library of end-
member spectra. The former can be called unsupervised unmixing, and
this is a difficult problem. Studies that have worked to solve un-
supervised unmixing usually require several assumptions, such as spa-
tial smoothness of the abundances and the existence of contiguous pure
pixels (Drumetz et al., 2016; Halimi et al., 2015; Zhou et al., 2018).
However, endmember can be defined at any level in the object com-
position/category hierarchy. For example, suppose that there are dif-
ferent types of trees. We can either treat all different trees as one tree
endmember or as different endmembers. The consequence is that for
unsupervised unmixing, not only the solution is underdetermined, but
also the validation is difficult to conduct. A more reasonable way is to
define the endmember classes at one level and estimate the abundances
given a spectral library at this level, which can be called supervised
unmixing. Since true abundances can be obtained from co-registered
high-resolution images, this problem has a unique solution and can be
validated.

1.2. Previous work

Previous studies for this problem have used methods that can be
categorized as set-based or distribution-based (Zare and Ho, 2014). Set-
based methods treat the spectral library as an unordered set and try to
pick the best combination of endmembers to model each pixel. A widely
used set-based method is multiple endmember spectral mixture analysis
(MESMA) (Roberts et al., 1998). The general idea of MESMA is to test
every endmember combination and select the one with the smallest
error within set thresholds that limit pixel complexity. Since it utilizes
all the spectra in the library for unmixing, the accuracy can be excellent
if the library is well derived. The success of MESMA in urban applica-
tions has been reported in (Franke et al., 2009; Powell et al., 2007;
Rashed et al., 2003; Roberts et al., 2012; Wu et al., 2014).

There are many variations to MESMA. In multiple-endmember
linear spectral unmixing model (MELSUM), the solution for abundances
is obtained from directly solving the linear equations and discarding the
negative values (Combe et al., 2008). In Bayesian spectral mixture
analysis (BSMA), the final abundances are weighted sums of abun-
dances from all combinations where the weights are proportional to the
probability of endmembers in the library (Song, 2005). In automatic
Monte Carlo unmixing (AutoMCU), pixels are unmixed using multiple
sets of random combinations, with the mean fractional values assigned
as abundances (Asner and Heidebrecht, 2002; Asner and Lobell, 2000).
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In alternate angle minimization (AAM), projection is iteratively used to
find the spectrum index of one endmember given the other end-
members fixed (Heylen et al., 2016).

Besides MESMA variants, there is sparse unmixing that used a large
spectral library with a sparsity constraint on the abundances, i.e. for-
cing the number of nonzero elements in the abundance vector to be
small (Tordache et al., 2011; Tang et al., 2015). By using different norms
on the abundance vector, it can control sparsity within each end-
member class, or between endmember classes (Drumetz et al., 2019). A
common way to optimize their objective function is through alternating
direction method of multipliers (ADMM). ADMM is an iterative algo-
rithm that gradually refines the abundances to approximate the optimal
values. The sparsity constraint is handled by a proximal operator in the
iteration.

Contrary to set-based methods, distribution-based methods assume
that the endmembers for each pixel are sampled from probability dis-
tributions, hence the pixels as linear combinations of these endmembers
also follow some distribution. It works by extracting parameters to re-
present these distributions, and unmixing the pixels based on the dis-
tribution parameters. Since it encodes the full library into only a few
parameters, it can handle a large spectral library, which is particularly
helpful to urban studies where the library derived from the image
contains a large amount of spectra.

The most widely used distribution is Gaussian, and its application
for spectral unmixing is known as the normal compositional model
(NCM) (Eches et al., 2010a, 2010b; Halimi et al., 2015; Stein, 2003;
Zare and Gader, 2010; Zhang et al., 2014). The popularity of NCM
comes from the fact that a linear combination of Gaussian random
variables is also a Gaussian random variable whose mean and covar-
iance matrix are linear combinations of the endmember means and
covariance matrices. Hence, the resulting probability density function
of the pixels has a simple analytical form. Fitting the actual pixel values
to the pixel distribution, the abundances can be solved by several
techniques, such as expectation maximization (Stein, 2003), sampling
methods (Eches et al., 2010a, 2010b; Halimi et al., 2015), and particle
swarm optimization (Zhang et al., 2014).

Following this philosophy, some have worked to extend the idea to
distributions beyond Gaussian. Du et al. (2014) proposed Beta dis-
tributions to model the spectral library. The benefit is that Beta dis-
tributions have a domain in the range 0-1, so are more suitable for the
reflectance range, and the actual library may have a skewed mode in
the distribution. They refer to the model as Beta compositional model
(BCM) in correspondence to NCM. Zhou et al. (2018) further extended
the idea to use Gaussian mixture models (GMM) for distributions. The
rationale comes from the observation that library endmembers may
have multiple modes, whose shape cannot be represented by a simple
Gaussian or Beta distribution. Since GMM is more flexible, it can ap-
proximate any distribution found in the library.

1.3. Motivation

Supervised unmixing requires a spectral library, which can be ex-
tracted from the images (Franke et al., 2009) or laboratory (Kotthaus
et al., 2014) or field measurements (Herold et al., 2004). Building a
specific library for each study site is a time-consuming process. With
existence of many spectral libraries from images collected at different
spatial resolutions, for different cities, during different times, a more
operational way is to combine them into a universal spectral library that
can be applied to images from different locations, sensors and timings
(Degerickx et al., 2017). Ideally, this universal spectral library should
be large enough to capture all the variability foreseen. Given such a
large library, it is necessary to reduce/prune it before application to a
specific image using set-based methods. This shifts the focus of un-
mixing from the actual unmixing method to library reduction, leading
to the emergence of a plethora of library pruning methods (Fan and
Deng, 2014; Garca-Haro et al., 2005; Schaaf et al., 2011). Despite wide
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acceptability of this scheme, this 2-step approach is problematic: (i)
library reduction may be laborious; (ii) the reduced library is targeted
to a specific unmixing image hence the process needs to repeated for
each dataset. We propose to solve the entire problem using a unified
model that does not artificially separate it into 2 steps.

Potential candidates of this unified model are distribution-based
methods since they innately accept large spectral libraries. However,
they need to be evaluated more comprehensively since previous vali-
dation of these methods relies on comparisons to reference libraries,
segmented images, or assessment of reconstruction error (Du et al.,
2014; Zare et al., 2013; Zhou et al., 2018). These validation methods
are not convincing enough, especially for urban imagery. First, different
conditions (sensor, atmosphere, light source) during data collection will
affect measured reflectances, making library comparison less ideal.
Second, high spatial resolution hyperspectral images are primarily
composed of pure pixels, and segmentation like abundance maps do not
necessarily indicate good unmixing capability for mixed pixels. Third,
reconstruction error is more related to model complexity than unmixing
accuracy since small reconstruction error could be achieved by over-
fitting (Murphy, 2012).

Following the validation of MESMA, a better validation approach is
to find high-resolution color images corresponding to the hyperspectral
image, determine the abundances from these color images and validate
the estimated abundance values (Franke et al., 2009; Powell et al.,
2007; Roberts et al., 2012). Because deriving such a dataset is a labor-
intensive and time-consuming process, to the best of our knowledge,
distribution-based methods such as GMM and NCM have not been va-
lidated in this way in urban studies. The significance of the work is that
if a method that uses the original spectral library has unmixing accu-
racy on par with or close to MESMA that uses the reduced library, then
(i) manual work on library reduction may be avoided in the case of a
large spectral library, (ii) the method may be more stable to various
datasets with this intermediate step removed, (iii) it will facilitate ap-
plications with a universal spectral library.

In this work, we applied several set-based and distribution-based
unmixing methods to a highly validated, comprehensive dataset of 128
urban images with spatial resolutions of 4m and 16 m. The dataset
includes a wide range of urban landcover of different mixtures and a
variety of materials, including different types of road, roof, vegetation,
and soil (Section 2). Using this dataset, we investigated the abilities of
distribution-based methods GMM, NCM, BCM (Section 3) and com-
pared them to set-based methods MESMA, AAM on characterizing
urban material abundances (Section 4).

2. Data

The study area includes the cities of Santa Barbara and Goleta as
well as the land between them, near the California coast. Urban com-
position is typical of the southwestern United States, including man-
made materials such as asphalt, concrete, metal, gravel, and brick, as
well as vegetation in the forms of turfgrass, various tree species, and
large areas of undeveloped land covered in senesced vegetation
(Roberts et al., 2012).

We used two low-resolution images (16 m) and two high-resolution
images (4 m) in this study. The low-resolution images were collected by
the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) (Vane
et al., 1993) over Santa Barbara, CA, on August 29, 2014. The original
data are downloadable from the AVIRIS data portal (https://
aviris.jpl.nasa.gov/alt locator/), where the flight names
are “f140829t01p00r09” and “f140829t01p00r10”. The spatial resolu-
tions are 15.6 m/pixel and 15.8 m/pixel. The spectral range measures
wavelengths from 380 to 2500 nm with 224 bands of approximately
10 nm bandwidth. High-resolution images were collected on September
5 by AVIRIS-Next Generation (AVIRIS-NG) with 3.9 m/pixel and 3.6 m/
pixel spatial resolutions. The spectral resolution is also higher, re-
cording 432 bands of about 5-6 nm bandwidth across a similar spectral
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(b) Enlarged 4m ROIs

Fig. 1. Validation polygons on the site (a) and all 4 m ROI images (b). The color images are created by extracting the bands closest to 650 nm, 540 nm and 470 nm.

The two 16 m images are mosaicked by geographic coordinates.

range as the 16 m dataset. We spectrally resampled the AVIRIS-NG
imagery to 224 bands (by linear interpolation) to produce an image
with identical spectral parameters to the 16 m AVIRIS image. We also
removed certain bands due to atmospheric interference, reducing the
number of bands to 164. Initial image processing was conducted by the
Jet Propulsion Laboratory, with additional processing in the lab to re-
duce the effects of elevation change on pixel location.

2.1. Validation of abundance maps

Pixel-wise accuracy assessment of abundances is difficult since co-
registration between the hyperspectral and reference images can be
inaccurate and the signal of a pixel can be influenced by its neighboring
pixels (Huang et al., 2002). A common way to mitigate this effect is to
evaluate the total abundance in a larger spatial unit, e.g. polygon
(Powell et al., 2007). We produced 64 polygons that represented the
variety of landcover within the study area as described by Wetherley
et al. (2017) (see Fig. 1). Each polygon was 180 m by 180 m in size,
corresponding to 11-12 pixels wide in the 16 m images or 46 or 50
pixels wide in the 4m images. Validation polygons were randomly
distributed across the area with a minimum distance 400m. If a
polygon contained large areas of open water or an undetermined ma-
terial, it was discarded and a new polygon was randomly generated
(small areas of water, e.g. swimming pools, are present in some poly-
gons, e.g. No. 37 and 58 in Fig. 1). Cover was determined within each
polygon using a 1 m NAIP high-resolution image. We used a combina-
tion of image segmentation, using the ECognition software package
(Baatz et al.,, 2004), and manual adjustments to classify the cover

within each polygon as turfgrass, tree, paved, roof, soil, or non-photo-
synthetic vegetation (NPV). Cover was further confirmed by visually in-
specting August 2014 Google Earth imagery. This is important for
distinguishing between turfgrass and NPV as the former may have se-
nesced to the latter by the time of the flights.

Fig. 2 shows a scatter plot of the 64 validated abundances when the
6 endmember classes are merged to 3 categories of green vegetation
(GV), impervious, and non-vegetated pervious. Most polygons are
dominated by a mixture of impervious and vegetation materials, which
is an accurate reflection of the area. To improve the representation of
less common mixtures in the scene, five polygons with high proportions
of soil were intentionally added.

2.2. Spectral library building

We produced 240 polygons across the 4 m scene to extract pure
spectra and build full spectral libraries. The polygons were intended to
capture class material variability as much as possible, and so included
multiple roof types, asphalt, concrete, trees, turfgrass, soil, and NPV, as
well as less common materials like rubber, solar panels, tennis courts,
and plastic tarps. These materials were then grouped into one of our 6
endmember classes: turfgrass, NPV, paved, roof, soil, and tree. The
same polygons were used to extract spectra from the 16 m imagery,
with necessary modifications as described in (Wetherley et al., 2017).
Together, we produced a library of 16 m spectra and a library of 4m
spectra. After removing duplicate spectra, the final 16 m library was
comprised of 3287 spectra and the 4m library contained 15,426
spectra.
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Fig. 2. Scatter plot of validated total abundances in terms of 3 categories, green
vegetation (turfgrass and tree), pervious (NPV and soil), and impervious (paved
and roof). Most of them lie on the plane, which is in line with the selection of
ROIs (almost all the pixels fall into the 6 endmember classes). (For inter-
pretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

These full spectral libraries were used to train the parameters of
distribution-based methods. To use them with MESMA, we performed
library reduction in two steps. First, iterative endmember selection
(IES) (Schaaf et al., 2011) was used to automatically select a subset of
spectra that represented the larger library. This is achieved iteratively,
by gradually selecting the most representative spectra and evaluating
their representativeness using a kappa coefficient. IES reduced the 16 m
and 4 m library sizes to 226 and 187, respectively. Libraries were fur-
ther reduced using iterative classification reduction (ICR), which uses
MESMA as a classifier to identify and remove spectra that tend to map
materials incorrectly (Wetherley et al., 2017). This step requires vi-
sually inspecting the results and manually removing spectra by refer-
ring to validated abundances. We carefully examined the results to
maximize the performance of MESMA, resulting in reduced libraries of
61 spectra for 16 m images and 95 spectra for 4 m images. The spectra
for each endmember class for all the cases are plotted in Fig. 3, and
their numbers are shown in Table 1.

3. Methods

We assess three distribution-based methods, GMM, NCM, BCM, and
two set-based methods, MESMA, AAM on the 16 m and 4 m images with
input of the same resolution spectral libraries.

3.1. Distribution-based methods

Distribution-based methods typically use the following generative
process to model the observed spectra:

1. For each pixe,n=1,2, ..., N:

1.1 For each endmember, j = 1, 2, ..., M, m,; ~ p(my| 6)),

1.2 n, ~ p(n,| 6o,

1.3 Yn< j=1anjanj + n,.

Namely, suppose we have M endmember classes, a pixel spectrum
yn can be assumed to be generated by randomly picking one spectrum
m,; from each class, and linearly mixing them based on some abun-
dances {ay;} plus some additive noise n,. Hence, if we use a probability
distribution p(m,;| ;) to represent the spectral distribution, the actual
endmembers {m,;} can be assumed to be sampled from this distribu-
tion. Given a spectral library, the distribution parameters {6;:j =1,
...,M} can be inferred from the library and our goal is to find {a,;} that
produces the observed spectra.
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3.1.1. Gaussian mixture model
The GMM method uses a GMM distribution as p(my| 8;) (Zhou et al.,
2018). Specifically,

K

p(my18) =) ”jk“””(mnj | B Z )
k=1 gk

where ./” is the multivariate Gaussian density function with mean
and covariance matrix X, {mj : m = 0, Xt = 1} are the prior prob-
abilities, K; is the number of components for the jth endmember class.
We refer to the GMM parameters {sy, Wix, Zix 1k = 1,...,K;} as 6.

Given a spectral library, {K;} can be estimated through model se-
lection (McLachlan and Rathnayake, 2014) and 6; can be estimated
through the standard expectation maximization (EM) algorithm (Bishop,
2006). In this study, we use cross-validation-based information cri-
terion (CVIC) (Smyth, 2000) to select K;. It works by calculating a log-
likelihood value Zx, for each candidate value of K; (e.g. K; = 1,2,3,4)
and picks the K; that maximizes this log-likelihood. Specifically, the log-
likelihood value is calculated by dividing the spectra into V subsets and
adding up the log-likelihood values of these subsets given the remaining
subsets for training. To reduce the number of components from a large
library, we slightly modified this procedure by picking the smallest K;
such that |31<, — %f| < Tewic%y, where &y is the maximum value and
Tcvic is a threshold parameter. We use Tcyic = 0.05 for the 16 m data.
For the 4 m data, since the spectral library is 5 times larger and the
number of pixels to unmix is about 20 times more, we use a large
Tcvic = 0.2 to select less components. For reproducibility, this entire
procedure was repeated 15 times and the most frequent combination
was selected. Fig. 4 shows the results by projecting all the pixels, library
spectra, and Gaussian components to 2 dimensions. We see that the
Gaussian components (ellipses) surround validation pixels at multiple
positions on the edge of the pixel cloud. The pixels can be viewed as
picking points within the ellipses and combining these points linearly
by Eq. (1). Fig. 5 shows the Gaussian components from the wavelength-
reflectance perspective, where the centers of Gaussian components and
their variation patterns are shown as curves.

Following the distribution assumption on endmembers, the prob-
ability density function of pixels can be derived according to Egs. (1)
and (2) using Theorem 1 in Zhou et al. (2018). Fitting the pixel spectra
to this density function, the abundances can be estimated by maximum
likelihood estimation (MLE), which maximizes

3 2
L(fay})) = D, log 2, nk,/t/'(yn | Ry i )
n=1 ker
M
S.t.O{anO, ZO{,U':I
=1 3

(2)

where 7" = {1,..., K} X {1,.., K3} X ---X{1,..., Kj} is the Cartesian product
of the M index sets, k = (ky,...,kyy) € #, and Ty, fx, Zni are defined by

M M M
= - Z: — 2 2:
Ty = I | ik Mo = E i jje» = E Ay it
j=1 j=1 nko 55 Jj

4

€ is the noise variance that is usually negligible compared to the linear
combination of {X;}. The objective function has an intuitive explana-
tion. As seen in (4), every linear combination of {u;} given the abun-
dances should be close to y,. However, this closeness is weighted in (3)
by both the linear combination of {Z;} (how endmembers scatter in a
class) and the probability of picking a combination (sty).

Fig. 6(b) shows the rationale behind GMM for a simple example
with 2 endmember classes. Using one Gaussian component, we have
p(my,; 16,) = 4" (my; | py;,el) and p(my, 16;) = ./V(m,,z (72 221)
where 5, is the covariance matrix corresponding to the ellipse. Since eI
is negligible compared to X5, % in (4) is dominated by (n22%o; and the
objective function (3) becomes mainly minimizing



Y. Zhou, et al.

Remote Sensing of Environment 246 (2020) 111857

Q (0]
g 1 g 1
2 05 e g 05
© 0. © 0. i
% 0 J ~ == % 0 ‘4555 i %
€ T 1 2 3 ® o 1 2 3
Wavelength (micrometer) Wavelength (micrometer)
Turfgrass NPV
8 3
- ! !
©05 ©05 T
% » el e, % " gl:ﬁ = %
5 g 1 9 g & g 1 2 3
Wavelength (micrometer) Wavelength (micrometer)
Paved Roof
8 3
. 5
T 05 e © 05
2 e S 2 fige
g o A
0 1 2 3 0 1 2 3
Wavelength (micrometer) Wavelength (micrometer)
Soll Tree
(b) Reduced 16m spectral library
[0] [0]
g 1 g 1
g iy 5 .
© 05 J/ © 0.5 P —
o o L:i=™ T ey
2 o e 15
0 1 2 3 0 1 2 3
Wavelength (micrometer) Wavelength (micrometer)
Turfgrass NPV
Q (0]
g 1 g 1
3 Sost ZizEEm =
é é . gﬁi (=
i e 0 —
0 1 2 3
Wavelength (micrometer) Wavelength (micrometer)
Paved Roof
8 ]
5 ! g5 |
© 05 == = By © 05
19 H @ jige
% 0 % “5 0 _4("‘,“_ £ —_
€ o 1 2 3 7o 1 2 3
Wavelength (micrometer) Wavelength (micrometer)
Soll Tree
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Fig. 3. Original and reduced spectral libraries. The numbers of spectra in each category are shown in Table 1.
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Table 1
Number of spectra for each endmember class in the libraries.
16m 4m
Full Reduced Full Reduced
Turfgrass 537 10 1468 5
NPV 884 14 3465 7
Paved 299 6 2902 17
Roof 435 17 2941 16
Soil 262 3 1442 5
Tree 870 11 3208 45
Total 3287 61 15,426 95
2 T 2
Yo D Gk Zm Yo = D by |
j=1 j=1 5)

Let v; and v, be the eigenvectors of ¥,; and A; and A, be the corre-
sponding  eigenvalues. Eq. (5) can be  written as
D %kvf (yn - Zj anj;.cﬂ). Note that v; points to the direction of the large
variation (vertical) and v, is perpendicular to v; (horizontal), and
A1> A, > 0. Hence Eq. (5) can tolerate a large error along v; while
only a little error along v,, resulting in estimated abundances {&,}

shown in the figure (up to scaling such that Zj &, = 1). Clearly, &n/Qn
is identical to the ground truth a,;/a,>. Moreover, even if we move p»;
in its range, as long as the covariance matrix is the same, we can still
accurately retrieve the original abundances. This implies that GMM/
NCM is more robust to changing representative spectra (Gaussian
centers).

The optimization problem (3) can be solved by a generalized EM
algorithm that alternates between an E step and an M step (Zhou et al.,
2018). Because of the computational cost, it is implemented in a low
dimensional subspace (10 dimensions) obtained by applying PCA on the
original spectral data. Since Eq. (1) still holds if both the pixel spectra
and endmember spectra are projected to a subspace, the estimated
abundances for the projected spectra are the original abundances. To
determine the projection direction, we selected an equal number of
spectra for each endmember class in the library and concatenated them
as input for PCA. This ensures that the relative sizes of endmember
classes do not affect the direction, and also ensures that the mean lies in
the center.

3.1.2. Normal compositional model
Similar to GMM, NCM models the distribution of each endmember
class as a Gaussian distribution and solves the MLE problem for the
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Fig. 5. Wavelength-reflectance plot of GMM components on the library spectra. The spectra are put into 2-dimensional bins of wavelength-reflectance to form a
histogram shown as gray scale background images. The center of each Gaussian component is shown as a solid curve. The center plus (minus) the largest eigenvector
multiplied by twice the square root of the eigenvalue is shown as a dashed curve, which indicates the major variation pattern of a Gaussian component. The prior

probabilities are shown in the legends.
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abundances. Since there are multiple implementations, we compared
two NCM versions in this study. First, it is a special case of GMM when
the number of components K; = 1 for all the endmember classes. Hence,
we can use the same implementation of GMM while forcing K; = 1 as
one type of NCM, referred to as GMM-1. Since it has the same im-
plementation as GMM, it should reflect the true difference introduced
by bringing multiple components.

Many variations of NCM utilize MCMC sampling as the optimization
approach (Eches et al., 2010a, 2010b; Halimi et al., 2015; Stein, 2003;
Zare and Gader, 2010; Zhang et al., 2014). The second type of NCM
uses a sampling algorithm in (Zare et al., 2013). The sampling method
is the Metropolis-Hastings algorithm. It is an iterative algorithm that
starts with an initial abundance value, then for each iteration, it sam-
ples abundance values from a Dirichlet distribution, and decides to
accept the new value or not based on a random number. Specifically,
the criterion to accept is to compare a uniformly generated random
number in [0,1] to the ratio of the likelihood values of the new
abundance value and the old one. If the new likelihood is greater than
the old one, i.e. the new abundance leads to a higher likelihood, the
ratio is greater than 1 hence the new abundance is always accepted no
matter what the random number is. Otherwise, the ratio is less than 1
and it becomes the probability to accept the new value. The algorithm
lasts a predefined number of iterations and the last sample is kept as the
final abundances. We tried 1000, 3000 iterations and picked the former
after finding no significant improvement of accuracy with more itera-
tions.

The difference between these two NCMs is not only the optimization
technique, but also the number of dimensions of the input data. GMM-1
uses projected data with 10 dimensions, while NCM sampling uses the
original data without dimensionality reduction. Hence, the latter will
utilize more spectral information.

3.1.3. Beta compositional model

Beta composition model (BCM) was proposed to model the skewness
in the endmember distribution (Du et al., 2014). It assumes that the
endmembers are sampled from Beta distributions. Though a linear
combination of Beta distribution random variables can have a complex
distribution, it uses a Beta distribution to approximate this combined
random variable. For each pixel, it uses K-means to find similar spectra
and assumes that they have similar abundances. Then, from these

® Actual pixel spectrum
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Fig. 6. Rationale behind set-based methods (a) and
GMM/NCM (b) for a simple example with 2 end-
member classes. The first one has no endmember
variability. The second one's variability is captured
by the ellipse. Set-based methods try to find some
representative spectra from the library such that
their linear combination is closest to the pixel spec-
trum. GMM/NCM tries to find a linear combination
of the centers such that the reconstruction error is in
line with the variation in the library. Given ground
truth {a,}, the estimated abundances {&,} from
GMM/NCM can exactly recover it (@,1/&u; = Qu1/An2)
while for set-based methods, @,1/@n2 # ot/ Ana-

(a) Distribution-based Unmixing

spectra, the mean and variance of a Beta distribution can be inferred.
On the other hand, the mean and variance of a combination of Beta
distribution random variables can be obtained from the endmember
distributions and the abundances. Equating these two sources of means
and variances leads to an optimization problem that can be solved for
the abundances.

There are two versions of BCM proposed, a spectral version and a
spatial version with two kinds of optimization technique, quadratic
programming and Metropolis-Hastings sampling. We chose the spectral
version with quadratic programming, which minimizes the squared
difference between the two sources of means. The code is available
from Alina Zare's website. Comparing to the two NCMs above, a dis-
advantage of BCM is that it assumes that the bands are statistically
independent, which is usually not the case in practice.

3.2. Set-based methods

Set-based methods aim to minimize the following objective function
with respect to the abundances

M

OfanO,Zdnj=1

M
Lla}) = 35 minlly, = 3wty Il, s t.
n j=1 j=1

©

where {y:j=1,...,M,k = 1,...,K;} are the spectra in the library and
K; is the number of spectra for the jth class, k = (ky,...,ky) and 7" is
again the Cartesian product of the M index sets {1,...,Kj},j =1, ..., M.
Fig. 6(a) shows how this objective function works, which can be seen as
finding a combination k that is closest to y, in terms of projection
distance. We reuse the notations in the GMM since theoretically, set-
based methods can be seen as a special case of GMM where each
spectrum in the library is a Gaussian component (see Appendix A for a
proof). In practice, the difficulty of minimizing (6) comes from enu-
merating all the possible combinations and different methods take a
different route to handle this.

3.2.1. Multiple endmember spectral mixture analysis

The most widely used set-based method could be MESMA (Roberts
et al., 1998). MESMA refers to each combination k as a model and an P-
endmember model means that there are only P nonzero a,; for each
pixel. From one-endmember model to two-endmember model and etc.,
MESMA gradually increases the number of endmembers in a model if
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more endmembers improve the error by a threshold. MESMA also
considers an additional shade endmember, which is set to be zero over
all the bands. An additional threshold is set to prevent the abundance of
shade from becoming too large.

The implementation was done by the original authors in IDL and
provided as an extension Viper Tool to ENVI. We used the same para-
meters as in (Wetherley et al.,, 2017), i.e. maximum RMSE 2.5%,
threshold RMSE 0.7%, abundances constrained between 0 and 1,
maximum shade threshold 80%, and a maximum of three endmembers
plus shade for each pixel. The obtained fractions were normalized to
give the final abundances.

3.2.2. Alternate angle minimization

Unlike MESMA that iteratively tries each combination, alternate
angle minimization (AAM) iteratively processes each endmember class
by picking an endmember for this class while fixing the rest end-
members (Heylen et al., 2016). The theory is that given some fixed
endmembers and the pixel spectrum, the reconstruction error of adding
an endmember is proportional to the sine of the angle of two projec-
tions. Hence, finding the endmember that leads to the least error is
equivalent to finding the one with the least angle. Since each search in
the library for an endmember class will lower the error, iterative search
over different classes will lead to an endmember set that minimizes the
error. The purpose of this strategy is to reduce the computational cost of
finding the best combination. It is shown that compared to the ex-
ponential time cost of MESMA, AAM has a linear time cost with respect
to the library size (Heylen et al., 2016). The code was implemented in
Matlab and downloaded from Rob Heylen’ s website.

Despite the same concept, AAM is different from MESMA in several
ways. First, it may not find the global minimum because of its alternate
optimization strategy. Second, it may find a pixel mixed by many
endmembers instead of maximum three. Finally, it does not include a
shade endmember to adjust for brightness differences between library
endmembers and measured spectra.

To summarize, a comparison of the characteristics of all the
methods is given in Table 2.

3.3. Validation strategy

Excluding MESMA, which was implemented in IDL, all methods
were implemented in Matlab. Due to ENVI license availability, MESMA
was run on a PC with Intel Core i7-2760QM CPU and 8 GB memory. The
other methods were run on a PC with Intel Core i7-3820 CPU and
64 GB memory.

We used three metrics to measure the differences between the es-
timated and reference fractions: mean absolute error (MAE), root mean
squared error (RMSE) and correlation coefficient (R). They were cal-
culated for each endmember class based on the 64 pairs of values. When
comparing different methods for unmixing quality, we will mainly re-
sort to MAE while also considering correlation coefficient and RMSE
since we can do statistical tests using MAE. For RMSE, only averaged
value over the 6 endmember classes is reported to save space. For R, it
should be accompanied by slope and intercept for additional informa-
tion. We visualize the results by scatter plots and Bland-Altman plots.
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Scatter plot shows the estimated value in the y-axis against the re-
ference value in the x-axis. The slope and intercept are shown in the
parenthesis below the scatter plot. Bland-Altman plot shows the dif-
ference of the estimated value and the reference value against the later
(Bland and Altman, 1986). It also plots the mean of these differences
with twice the standard deviation as an interval. We can expect that the
error falls into this interval with 95% probability if the differences
follow a Gaussian distribution.

4. Results
4.1. Accuracy and efficiency

4.1.1. 16 m case

Table 3 shows the MAE and correlation coefficient for the 16 m
images (see Supplementary Fig. S1 - S64 for abundance maps). Original
errors for 6 classes imply that GMM and AAM have the best accuracy,
followed by MESMA. The difference comes from the paved, roof and
tree classes, where GMM outperformed MESMA. In general, MESMA,
AAM, GMM and GMM-1 had similar accuracy. Among all the dis-
tribution-based methods, GMM has the best performance overall, with
fewest errors for NPV, paved and roof. Fig. 7 compares the estimated
total abundances to validated abundances for each mate