
Contents lists available at ScienceDirect

Remote Sensing of Environment

journal homepage: www.elsevier.com/locate/rse

Unmixing urban hyperspectral imagery using probability distributions to
represent endmember variability
Yuan Zhoua,⁎,1, Erin B. Wetherleyb, Paul D. Gadera
a Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL, USA
bDepartment of Geography, University of California Santa Barbara, Santa Barbara, CA, USA

A R T I C L E I N F O

Keywords:
Spectral mixture analysis
MESMA
AVIRIS
GMM
NCM

A B S T R A C T

Urban composition can be analyzed through spectral unmixing of images from airborne imaging spectrometers.
Unmixing given a spectral library can be accomplished by set-based methods or distribution-based methods. For
computational efficiency and optimal accuracy, set-based methods employ a library reduction procedure when
applied to large spectral libraries. On the other hand, distribution-based methods model the library by only a few
parameters, hence innately accept large libraries. A natural question arises that can distribution-based methods
with the original large spectral library achieve comparable performance to set-based methods in urban imagery.

In this study, we aim to investigate the unmixing capability of several distribution-based methods, Gaussian
mixture model (GMM), normal compositional model (NCM), and Beta compositional model (BCM) by comparing
them to set-based methods MESMA and alternate angle minimization (AAM). The data for validation were
collected by the AVIRIS sensor over the Santa Barbara region: two 16m spatial resolution and two 4m spatial
resolution images. 64 validated regions of interest (ROI) (180m by 180m) were used to assess estimate accu-
racy. Ground truth was obtained using 1m images leading to the following 6 classes: turfgrass, non-photo-
synthetic vegetation (NPV), paved, roof, soil, and tree. Spectral libraries were built by manually identifying and
extracting pure spectra from both resolution images, resulting in 3287 spectra at 16m and 15,426 spectra at 4 m.
The libraries were further reduced to 61 spectra at 16m and 95 spectra at 4m for set-based methods. The results
show that in terms of mean absolute error (MAE), GMM performed best among the distribution-based methods
while MESMA performed best among the set-based methods. For 16m data, there is no significant difference
between GMM and MESMA (MAE=0.069 vs. MAE=0.074, p=0.25). For 4m data, though GMM is not as
accurate as MESMA (MAE=0.056 vs. MAE=0.046, p=7e−5), it is better than AAM (MAE=0.056 vs.
MAE=0.065, p=0.02) which is a re-implementation of MESMA. Further evidence on a reconstructed synthetic
dataset implies possible overfitting of the reduced library to the images for MESMA. These findings suggest that
the distribution-based method GMM could achieve comparable unmixing accuracy to set-based methods without
the need of library reduction, it may also be more stable across datasets, and the current 2-step workflow could
be replaced by a single model in applying a universal spectral library.1

1. Introduction

Global climate change and urbanization will bring many challenges
to our environment. Urban areas are a major source of greenhouse gas
emissions. To facilitate monitoring, management, development of
urban environment, land cover information is a prerequisite and used in
many physical models describing the urban ecosystem, such as climate
(De Ridder et al., 2015), energy and water flux (Wang et al., 1996). It is
also associated with urban heat island intensity (Zhou et al., 2017a),
which in turn impacts the urban resident health. Urban land cover

fractions can be estimated from airborne or spaceborne hyperspectral
imagery (Van der Linden et al., 2019). Compared to color/panchro-
matic imagery that shows similar reflectance between different urban
materials, imaging spectroscopy can measure the reflectance at narrow
bands covering visible, near infrared, and short wave infrared (VSWIR)
range, hence can differentiate materials with more subtle details
(Herold et al., 2004). Applying high spatial and spectral resolution
imagery for mapping urban vegetation and surfaces has been performed
before (Alonzo et al., 2013). However, accurate mapping through
classifying the acquired pixels requires a spatially fine-scale image,
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which is expensive to collect since it requires the airborne imaging
spectrometer to fly at a low altitude. For example, the airborne visible
infrared imaging spectrometer (AVIRIS) collects two types of images,
16m spatial resolution at a 20 km altitude and 4m spatial resolution at
a 4 km altitude, between which only the 4m data may be fine enough
for this task. Considering the difficulty of acquiring these airborne data
for multiple urban areas or time periods, a more applicable way is to
use an orbital imaging spectrometer to measure urban composition
globally and track changes over time.

Currently, several upcoming orbital imaging spectrometers are able
to achieve this goal, such as NASA's Hyperspectral Infrared Imager
(HyspIRI) (Lee et al., 2015), Germany's Environmental Mapping and
Analysis Program (EnMAP) (Guanter et al., 2015). They will sig-
nificantly increase the coverage range and revisit frequency of the same
sites, scaling up the current local case studies using infrequent hyper-
spectral measurements to a regional and global level. However, due to
their high altitude collection process and the tradeoff between spatial
and spectral details, data from these orbital spectrometers typically
have very low spatial resolutions (e.g. 30m/pixel for HyspIRI and
EnMAP (Lee et al., 2015)). At such a coarse resolution, multiple ma-
terials can exist in a pixel and contribute to the measured spectrum, also
known as a mixed pixel (Small, 2001). From the spectra of these mixed
pixels, sub-pixel composition can be estimated by using spectral mix-
ture analysis (SMA), which tries to find the underlying constituting
material spectra (endmember) and their fractions (abundance). By un-
mixing these pixels to obtain their sub-pixel fractions, we can measure
and track urban composition globally, which can serve as input for
advanced ecosystem models.

1.1. Spectral mixture analysis

The most common SMA that relates endmembers and abundances to
a pixel relies on the linear mixing model (LMM), which assumes that the
reflectance measured within each pixel is a unique linear combination
of a fixed set of endmember spectra, weighted by their abundances, plus
some noise (Settle and Drake, 1993). The intuition behind this model is
that given a flat surface the fractional area of a material determines its
representation in the measured signal. There are two problems to this
model. First, spectral reflectance for identical materials can be highly
variable. For example, asphalt spectra can vary significantly based on
age, shadowing, and composite materials (Herold and Roberts, 2005).
This is called endmember variability, and it is caused by several extrinsic
factors and intrinsic factors, such as illumination, atmospheric condi-
tion, and measurement scales (objects or materials considered “pure”
may in reality be composed of materials at smaller scales) (Somers
et al., 2011; Zare and Ho, 2014). Second, multiple scattering and sha-
dowing exist inevitably due to topographic complexity in urban scenes,
which breaks the single scattering assumption in the LMM. To over-
come the second problem, we may introduce more complicated non-
linear models, such as bilinear models (Heylen et al., 2014). However,
the complexity in urban scenes makes accurate modeling of multiple
scattering a difficult task. On the other hand, if we allow the end-
member spectra to vary per pixel according to endmember variability,
we may mitigate these two problems simultaneously.

The first advantage of this scheme comes from the fact that end-
member is a hierarchical notion. For example, a tree is composed of
trunk, bark, leaf, and each of them can be called an endmember.
Similarly, roofs can contain metal chimneys, and pavements have cars,
pedestrians, etc. For any macroscopic object, it may be decomposed
into different levels of components, and each level can be seen as an
endmember. By defining endmembers as high level objects (e.g. tree,
roof, pavement), the nonlinear interaction of low level objects is treated
as endmember variability within this object hence ignored in the LMM.
Furthermore, the nonlinear interaction among these high level objects
(e.g. multiple scattering) can also be treated as endmember variability.
For example, consider a case where the light ray first hits the building

or tree, then the ground, and finally received by the sensor. Since the
resulting pixel on a fine enough image still corresponds to the ground,
the effect of multiple scattering is ultimately incorporated into the
formation of the ground spectrum. Hence, considering endmember
variability, we assume that these high level objects still contribute to a
pixel spectrum in a linear way except that their spectra are altered ei-
ther intrinsically or extrinsically.

By modeling endmember variability, the LMM follows equation:

= + = …
=

n Ny m n , 1, ,n
j

M

nj nj n
1 (1)

where yn ∈ ℝB is the spectrum of the nth pixel in the image (we use ℝB

to denote the B dimensional vector space hence yn ∈ ℝB is short for yn
being a B dimensional vector), B is the number of bands, N is the
number of pixels, M is the number of endmembers. mnj ∈ ℝB is the jth
endmember for the nth pixel. αnj ∈ ℝ is the abundance that usually
satisfies the positivity and sum-to-one constraints, i.e. αnj≥0, ∑jαnj=1.
Finally, we have some additive noise nn. A direct observation of Eq. (1)
is that the more sparse the abundances, the more confident we are
about the validity of the model since in the extreme case when there is
only 1 endmember in the pixel, the equation always holds (αnk=1 for
some k and αnj=0 for j≠ k).

When it comes to unmixing in terms of (1), we are referring to re-
trieving {mnj,αnj} from {yn}, or {αnj} from {yn} and a library of end-
member spectra. The former can be called unsupervised unmixing, and
this is a difficult problem. Studies that have worked to solve un-
supervised unmixing usually require several assumptions, such as spa-
tial smoothness of the abundances and the existence of contiguous pure
pixels (Drumetz et al., 2016; Halimi et al., 2015; Zhou et al., 2018).
However, endmember can be defined at any level in the object com-
position/category hierarchy. For example, suppose that there are dif-
ferent types of trees. We can either treat all different trees as one tree
endmember or as different endmembers. The consequence is that for
unsupervised unmixing, not only the solution is underdetermined, but
also the validation is difficult to conduct. A more reasonable way is to
define the endmember classes at one level and estimate the abundances
given a spectral library at this level, which can be called supervised
unmixing. Since true abundances can be obtained from co-registered
high-resolution images, this problem has a unique solution and can be
validated.

1.2. Previous work

Previous studies for this problem have used methods that can be
categorized as set-based or distribution-based (Zare and Ho, 2014). Set-
based methods treat the spectral library as an unordered set and try to
pick the best combination of endmembers to model each pixel. A widely
used set-based method is multiple endmember spectral mixture analysis
(MESMA) (Roberts et al., 1998). The general idea of MESMA is to test
every endmember combination and select the one with the smallest
error within set thresholds that limit pixel complexity. Since it utilizes
all the spectra in the library for unmixing, the accuracy can be excellent
if the library is well derived. The success of MESMA in urban applica-
tions has been reported in (Franke et al., 2009; Powell et al., 2007;
Rashed et al., 2003; Roberts et al., 2012; Wu et al., 2014).

There are many variations to MESMA. In multiple-endmember
linear spectral unmixing model (MELSUM), the solution for abundances
is obtained from directly solving the linear equations and discarding the
negative values (Combe et al., 2008). In Bayesian spectral mixture
analysis (BSMA), the final abundances are weighted sums of abun-
dances from all combinations where the weights are proportional to the
probability of endmembers in the library (Song, 2005). In automatic
Monte Carlo unmixing (AutoMCU), pixels are unmixed using multiple
sets of random combinations, with the mean fractional values assigned
as abundances (Asner and Heidebrecht, 2002; Asner and Lobell, 2000).
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In alternate angle minimization (AAM), projection is iteratively used to
find the spectrum index of one endmember given the other end-
members fixed (Heylen et al., 2016).

Besides MESMA variants, there is sparse unmixing that used a large
spectral library with a sparsity constraint on the abundances, i.e. for-
cing the number of nonzero elements in the abundance vector to be
small (Iordache et al., 2011; Tang et al., 2015). By using different norms
on the abundance vector, it can control sparsity within each end-
member class, or between endmember classes (Drumetz et al., 2019). A
common way to optimize their objective function is through alternating
direction method of multipliers (ADMM). ADMM is an iterative algo-
rithm that gradually refines the abundances to approximate the optimal
values. The sparsity constraint is handled by a proximal operator in the
iteration.

Contrary to set-based methods, distribution-based methods assume
that the endmembers for each pixel are sampled from probability dis-
tributions, hence the pixels as linear combinations of these endmembers
also follow some distribution. It works by extracting parameters to re-
present these distributions, and unmixing the pixels based on the dis-
tribution parameters. Since it encodes the full library into only a few
parameters, it can handle a large spectral library, which is particularly
helpful to urban studies where the library derived from the image
contains a large amount of spectra.

The most widely used distribution is Gaussian, and its application
for spectral unmixing is known as the normal compositional model
(NCM) (Eches et al., 2010a, 2010b; Halimi et al., 2015; Stein, 2003;
Zare and Gader, 2010; Zhang et al., 2014). The popularity of NCM
comes from the fact that a linear combination of Gaussian random
variables is also a Gaussian random variable whose mean and covar-
iance matrix are linear combinations of the endmember means and
covariance matrices. Hence, the resulting probability density function
of the pixels has a simple analytical form. Fitting the actual pixel values
to the pixel distribution, the abundances can be solved by several
techniques, such as expectation maximization (Stein, 2003), sampling
methods (Eches et al., 2010a, 2010b; Halimi et al., 2015), and particle
swarm optimization (Zhang et al., 2014).

Following this philosophy, some have worked to extend the idea to
distributions beyond Gaussian. Du et al. (2014) proposed Beta dis-
tributions to model the spectral library. The benefit is that Beta dis-
tributions have a domain in the range 0–1, so are more suitable for the
reflectance range, and the actual library may have a skewed mode in
the distribution. They refer to the model as Beta compositional model
(BCM) in correspondence to NCM. Zhou et al. (2018) further extended
the idea to use Gaussian mixture models (GMM) for distributions. The
rationale comes from the observation that library endmembers may
have multiple modes, whose shape cannot be represented by a simple
Gaussian or Beta distribution. Since GMM is more flexible, it can ap-
proximate any distribution found in the library.

1.3. Motivation

Supervised unmixing requires a spectral library, which can be ex-
tracted from the images (Franke et al., 2009) or laboratory (Kotthaus
et al., 2014) or field measurements (Herold et al., 2004). Building a
specific library for each study site is a time-consuming process. With
existence of many spectral libraries from images collected at different
spatial resolutions, for different cities, during different times, a more
operational way is to combine them into a universal spectral library that
can be applied to images from different locations, sensors and timings
(Degerickx et al., 2017). Ideally, this universal spectral library should
be large enough to capture all the variability foreseen. Given such a
large library, it is necessary to reduce/prune it before application to a
specific image using set-based methods. This shifts the focus of un-
mixing from the actual unmixing method to library reduction, leading
to the emergence of a plethora of library pruning methods (Fan and
Deng, 2014; Garca-Haro et al., 2005; Schaaf et al., 2011). Despite wide

acceptability of this scheme, this 2-step approach is problematic: (i)
library reduction may be laborious; (ii) the reduced library is targeted
to a specific unmixing image hence the process needs to repeated for
each dataset. We propose to solve the entire problem using a unified
model that does not artificially separate it into 2 steps.

Potential candidates of this unified model are distribution-based
methods since they innately accept large spectral libraries. However,
they need to be evaluated more comprehensively since previous vali-
dation of these methods relies on comparisons to reference libraries,
segmented images, or assessment of reconstruction error (Du et al.,
2014; Zare et al., 2013; Zhou et al., 2018). These validation methods
are not convincing enough, especially for urban imagery. First, different
conditions (sensor, atmosphere, light source) during data collection will
affect measured reflectances, making library comparison less ideal.
Second, high spatial resolution hyperspectral images are primarily
composed of pure pixels, and segmentation like abundance maps do not
necessarily indicate good unmixing capability for mixed pixels. Third,
reconstruction error is more related to model complexity than unmixing
accuracy since small reconstruction error could be achieved by over-
fitting (Murphy, 2012).

Following the validation of MESMA, a better validation approach is
to find high-resolution color images corresponding to the hyperspectral
image, determine the abundances from these color images and validate
the estimated abundance values (Franke et al., 2009; Powell et al.,
2007; Roberts et al., 2012). Because deriving such a dataset is a labor-
intensive and time-consuming process, to the best of our knowledge,
distribution-based methods such as GMM and NCM have not been va-
lidated in this way in urban studies. The significance of the work is that
if a method that uses the original spectral library has unmixing accu-
racy on par with or close to MESMA that uses the reduced library, then
(i) manual work on library reduction may be avoided in the case of a
large spectral library, (ii) the method may be more stable to various
datasets with this intermediate step removed, (iii) it will facilitate ap-
plications with a universal spectral library.

In this work, we applied several set-based and distribution-based
unmixing methods to a highly validated, comprehensive dataset of 128
urban images with spatial resolutions of 4m and 16m. The dataset
includes a wide range of urban landcover of different mixtures and a
variety of materials, including different types of road, roof, vegetation,
and soil (Section 2). Using this dataset, we investigated the abilities of
distribution-based methods GMM, NCM, BCM (Section 3) and com-
pared them to set-based methods MESMA, AAM on characterizing
urban material abundances (Section 4).

2. Data

The study area includes the cities of Santa Barbara and Goleta as
well as the land between them, near the California coast. Urban com-
position is typical of the southwestern United States, including man-
made materials such as asphalt, concrete, metal, gravel, and brick, as
well as vegetation in the forms of turfgrass, various tree species, and
large areas of undeveloped land covered in senesced vegetation
(Roberts et al., 2012).

We used two low-resolution images (16m) and two high-resolution
images (4m) in this study. The low-resolution images were collected by
the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) (Vane
et al., 1993) over Santa Barbara, CA, on August 29, 2014. The original
data are downloadable from the AVIRIS data portal (https://
aviris.jpl.nasa.gov/alt_locator/), where the flight names
are “f140829t01p00r09” and “f140829t01p00r10”. The spatial resolu-
tions are 15.6 m/pixel and 15.8m/pixel. The spectral range measures
wavelengths from 380 to 2500 nm with 224 bands of approximately
10 nm bandwidth. High-resolution images were collected on September
5 by AVIRIS-Next Generation (AVIRIS-NG) with 3.9 m/pixel and 3.6m/
pixel spatial resolutions. The spectral resolution is also higher, re-
cording 432 bands of about 5–6 nm bandwidth across a similar spectral
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range as the 16m dataset. We spectrally resampled the AVIRIS-NG
imagery to 224 bands (by linear interpolation) to produce an image
with identical spectral parameters to the 16m AVIRIS image. We also
removed certain bands due to atmospheric interference, reducing the
number of bands to 164. Initial image processing was conducted by the
Jet Propulsion Laboratory, with additional processing in the lab to re-
duce the effects of elevation change on pixel location.

2.1. Validation of abundance maps

Pixel-wise accuracy assessment of abundances is difficult since co-
registration between the hyperspectral and reference images can be
inaccurate and the signal of a pixel can be influenced by its neighboring
pixels (Huang et al., 2002). A common way to mitigate this effect is to
evaluate the total abundance in a larger spatial unit, e.g. polygon
(Powell et al., 2007). We produced 64 polygons that represented the
variety of landcover within the study area as described by Wetherley
et al. (2017) (see Fig. 1). Each polygon was 180m by 180m in size,
corresponding to 11–12 pixels wide in the 16m images or 46 or 50
pixels wide in the 4m images. Validation polygons were randomly
distributed across the area with a minimum distance 400m. If a
polygon contained large areas of open water or an undetermined ma-
terial, it was discarded and a new polygon was randomly generated
(small areas of water, e.g. swimming pools, are present in some poly-
gons, e.g. No. 37 and 58 in Fig. 1). Cover was determined within each
polygon using a 1m NAIP high-resolution image. We used a combina-
tion of image segmentation, using the ECognition software package
(Baatz et al., 2004), and manual adjustments to classify the cover

within each polygon as turfgrass, tree, paved, roof, soil, or non-photo-
synthetic vegetation (NPV). Cover was further confirmed by visually in-
specting August 2014 Google Earth imagery. This is important for
distinguishing between turfgrass and NPV as the former may have se-
nesced to the latter by the time of the flights.

Fig. 2 shows a scatter plot of the 64 validated abundances when the
6 endmember classes are merged to 3 categories of green vegetation
(GV), impervious, and non-vegetated pervious. Most polygons are
dominated by a mixture of impervious and vegetation materials, which
is an accurate reflection of the area. To improve the representation of
less common mixtures in the scene, five polygons with high proportions
of soil were intentionally added.

2.2. Spectral library building

We produced 240 polygons across the 4m scene to extract pure
spectra and build full spectral libraries. The polygons were intended to
capture class material variability as much as possible, and so included
multiple roof types, asphalt, concrete, trees, turfgrass, soil, and NPV, as
well as less common materials like rubber, solar panels, tennis courts,
and plastic tarps. These materials were then grouped into one of our 6
endmember classes: turfgrass, NPV, paved, roof, soil, and tree. The
same polygons were used to extract spectra from the 16m imagery,
with necessary modifications as described in (Wetherley et al., 2017).
Together, we produced a library of 16m spectra and a library of 4m
spectra. After removing duplicate spectra, the final 16m library was
comprised of 3287 spectra and the 4m library contained 15,426
spectra.

Fig. 1. Validation polygons on the site (a) and all 4m ROI images (b). The color images are created by extracting the bands closest to 650 nm, 540 nm and 470 nm.
The two 16m images are mosaicked by geographic coordinates.
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These full spectral libraries were used to train the parameters of
distribution-based methods. To use them with MESMA, we performed
library reduction in two steps. First, iterative endmember selection
(IES) (Schaaf et al., 2011) was used to automatically select a subset of
spectra that represented the larger library. This is achieved iteratively,
by gradually selecting the most representative spectra and evaluating
their representativeness using a kappa coefficient. IES reduced the 16m
and 4m library sizes to 226 and 187, respectively. Libraries were fur-
ther reduced using iterative classification reduction (ICR), which uses
MESMA as a classifier to identify and remove spectra that tend to map
materials incorrectly (Wetherley et al., 2017). This step requires vi-
sually inspecting the results and manually removing spectra by refer-
ring to validated abundances. We carefully examined the results to
maximize the performance of MESMA, resulting in reduced libraries of
61 spectra for 16m images and 95 spectra for 4m images. The spectra
for each endmember class for all the cases are plotted in Fig. 3, and
their numbers are shown in Table 1.

3. Methods

We assess three distribution-based methods, GMM, NCM, BCM, and
two set-based methods, MESMA, AAM on the 16m and 4m images with
input of the same resolution spectral libraries.

3.1. Distribution-based methods

Distribution-based methods typically use the following generative
process to model the observed spectra:

1. For each pixel, n=1, 2, …, N:
1.1 For each endmember, j=1, 2, …, M, mnj∼ p(mnj|θj),
1.2 nn∼ p(nn|θ0),
1.3 yn←∑j=1

Mmnjαnj+ nn.
Namely, suppose we have M endmember classes, a pixel spectrum

yn can be assumed to be generated by randomly picking one spectrum
mnj from each class, and linearly mixing them based on some abun-
dances {αnj} plus some additive noise nn. Hence, if we use a probability
distribution p(mnj|θj) to represent the spectral distribution, the actual
endmembers {mnj} can be assumed to be sampled from this distribu-
tion. Given a spectral library, the distribution parameters {θj : j=1,
…,M} can be inferred from the library and our goal is to find {αnj} that
produces the observed spectra.

3.1.1. Gaussian mixture model
The GMMmethod uses a GMM distribution as p(mnj|θj) (Zhou et al.,

2018). Specifically,

=
=

µp m m( | ) | , ,nj j
k

K

jk nj jk
jk1

j

N
(2)

where N is the multivariate Gaussian density function with mean μjk
and covariance matrix ∑jk, {πjk : πjk≥0,∑kπjk=1} are the prior prob-
abilities, Kj is the number of components for the jth endmember class.
We refer to the GMM parameters {πjk,μjk,∑jk : k=1,…,Kj} as θj.

Given a spectral library, {Kj} can be estimated through model se-
lection (McLachlan and Rathnayake, 2014) and θj can be estimated
through the standard expectation maximization (EM) algorithm (Bishop,
2006). In this study, we use cross-validation-based information cri-
terion (CVIC) (Smyth, 2000) to select Kj. It works by calculating a log-
likelihood value ℒKj

for each candidate value of Kj (e.g. Kj=1,2,3,4)
and picks the Kj that maximizes this log-likelihood. Specifically, the log-
likelihood value is calculated by dividing the spectra into V subsets and
adding up the log-likelihood values of these subsets given the remaining
subsets for training. To reduce the number of components from a large
library, we slightly modified this procedure by picking the smallest Kj

such that |ℒKj
−ℒj′| ≤ TCVICℒj′, where ℒj′ is the maximum value and

TCVIC is a threshold parameter. We use TCVIC=0.05 for the 16m data.
For the 4m data, since the spectral library is 5 times larger and the
number of pixels to unmix is about 20 times more, we use a large
TCVIC=0.2 to select less components. For reproducibility, this entire
procedure was repeated 15 times and the most frequent combination
was selected. Fig. 4 shows the results by projecting all the pixels, library
spectra, and Gaussian components to 2 dimensions. We see that the
Gaussian components (ellipses) surround validation pixels at multiple
positions on the edge of the pixel cloud. The pixels can be viewed as
picking points within the ellipses and combining these points linearly
by Eq. (1). Fig. 5 shows the Gaussian components from the wavelength-
reflectance perspective, where the centers of Gaussian components and
their variation patterns are shown as curves.

Following the distribution assumption on endmembers, the prob-
ability density function of pixels can be derived according to Eqs. (1)
and (2) using Theorem 1 in Zhou et al. (2018). Fitting the pixel spectra
to this density function, the abundances can be estimated by maximum
likelihood estimation (MLE), which maximizes
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where = … × … × × …K K K{1, , } {1, , } {1, , }M1 2K is the Cartesian product
of the M index sets, = …k kk ( , , )M1 K , and πk, μnk, ∑nk are defined by
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ϵ is the noise variance that is usually negligible compared to the linear
combination of {∑jk}. The objective function has an intuitive explana-
tion. As seen in (4), every linear combination of {μjk} given the abun-
dances should be close to yn. However, this closeness is weighted in (3)
by both the linear combination of {∑jk} (how endmembers scatter in a
class) and the probability of picking a combination (πk).

Fig. 6(b) shows the rationale behind GMM for a simple example
with 2 endmember classes. Using one Gaussian component, we have

= µp m m I( | ) ( | , )n n1 1 1 11N and = ( )µp m m( | ) | ,n n2 2 2 21 21
N

where ∑21 is the covariance matrix corresponding to the ellipse. Since ϵI
is negligible compared to ∑21, ∑nk in (4) is dominated by αn22∑21 and the
objective function (3) becomes mainly minimizing

Fig. 2. Scatter plot of validated total abundances in terms of 3 categories, green
vegetation (turfgrass and tree), pervious (NPV and soil), and impervious (paved
and roof). Most of them lie on the plane, which is in line with the selection of
ROIs (almost all the pixels fall into the 6 endmember classes). (For inter-
pretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
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Let v1 and v2 be the eigenvectors of ∑21 and λ1 and λ2 be the corre-
sponding eigenvalues. Eq. (5) can be written as

( )µv yk k
T

n j nj j
1

1k
. Note that v1 points to the direction of the large

variation (vertical) and v2 is perpendicular to v1 (horizontal), and
λ1 ≫ λ2> 0. Hence Eq. (5) can tolerate a large error along v1 while
only a little error along v2, resulting in estimated abundances { }nj

shown in the figure (up to scaling such that = 1j nj ). Clearly, /n n1 2
is identical to the ground truth αn1/αn2. Moreover, even if we move μ21
in its range, as long as the covariance matrix is the same, we can still
accurately retrieve the original abundances. This implies that GMM/
NCM is more robust to changing representative spectra (Gaussian
centers).

The optimization problem (3) can be solved by a generalized EM
algorithm that alternates between an E step and an M step (Zhou et al.,
2018). Because of the computational cost, it is implemented in a low
dimensional subspace (10 dimensions) obtained by applying PCA on the
original spectral data. Since Eq. (1) still holds if both the pixel spectra
and endmember spectra are projected to a subspace, the estimated
abundances for the projected spectra are the original abundances. To
determine the projection direction, we selected an equal number of
spectra for each endmember class in the library and concatenated them
as input for PCA. This ensures that the relative sizes of endmember
classes do not affect the direction, and also ensures that the mean lies in
the center.

3.1.2. Normal compositional model
Similar to GMM, NCM models the distribution of each endmember

class as a Gaussian distribution and solves the MLE problem for the

Fig. 3. Original and reduced spectral libraries. The numbers of spectra in each category are shown in Table 1.

Table 1
Number of spectra for each endmember class in the libraries.

16m 4m

Full Reduced Full Reduced

Turfgrass 537 10 1468 5
NPV 884 14 3465 7
Paved 299 6 2902 17
Roof 435 17 2941 16
Soil 262 3 1442 5
Tree 870 11 3208 45
Total 3287 61 15,426 95
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6



Fig. 4. Scatter plot of GMM components on the pixels and library spectra. The projection is determined by performing PCA on all the spectra in the library. The pixels
of 64 images for each scale are combined and denoted by gray dots. The colored dots show the spectra in the library for each endmember class. The ellipses represent
the projected Gaussian components (twice the standard deviation along the major and minor axes, covering 86% of the total probability mass).

Fig. 5. Wavelength-reflectance plot of GMM components on the library spectra. The spectra are put into 2-dimensional bins of wavelength-reflectance to form a
histogram shown as gray scale background images. The center of each Gaussian component is shown as a solid curve. The center plus (minus) the largest eigenvector
multiplied by twice the square root of the eigenvalue is shown as a dashed curve, which indicates the major variation pattern of a Gaussian component. The prior
probabilities are shown in the legends.
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abundances. Since there are multiple implementations, we compared
two NCM versions in this study. First, it is a special case of GMM when
the number of components Kj=1 for all the endmember classes. Hence,
we can use the same implementation of GMM while forcing Kj=1 as
one type of NCM, referred to as GMM-1. Since it has the same im-
plementation as GMM, it should reflect the true difference introduced
by bringing multiple components.

Many variations of NCM utilize MCMC sampling as the optimization
approach (Eches et al., 2010a, 2010b; Halimi et al., 2015; Stein, 2003;
Zare and Gader, 2010; Zhang et al., 2014). The second type of NCM
uses a sampling algorithm in (Zare et al., 2013). The sampling method
is the Metropolis-Hastings algorithm. It is an iterative algorithm that
starts with an initial abundance value, then for each iteration, it sam-
ples abundance values from a Dirichlet distribution, and decides to
accept the new value or not based on a random number. Specifically,
the criterion to accept is to compare a uniformly generated random
number in [0,1] to the ratio of the likelihood values of the new
abundance value and the old one. If the new likelihood is greater than
the old one, i.e. the new abundance leads to a higher likelihood, the
ratio is greater than 1 hence the new abundance is always accepted no
matter what the random number is. Otherwise, the ratio is less than 1
and it becomes the probability to accept the new value. The algorithm
lasts a predefined number of iterations and the last sample is kept as the
final abundances. We tried 1000, 3000 iterations and picked the former
after finding no significant improvement of accuracy with more itera-
tions.

The difference between these two NCMs is not only the optimization
technique, but also the number of dimensions of the input data. GMM-1
uses projected data with 10 dimensions, while NCM sampling uses the
original data without dimensionality reduction. Hence, the latter will
utilize more spectral information.

3.1.3. Beta compositional model
Beta composition model (BCM) was proposed to model the skewness

in the endmember distribution (Du et al., 2014). It assumes that the
endmembers are sampled from Beta distributions. Though a linear
combination of Beta distribution random variables can have a complex
distribution, it uses a Beta distribution to approximate this combined
random variable. For each pixel, it uses K-means to find similar spectra
and assumes that they have similar abundances. Then, from these

spectra, the mean and variance of a Beta distribution can be inferred.
On the other hand, the mean and variance of a combination of Beta
distribution random variables can be obtained from the endmember
distributions and the abundances. Equating these two sources of means
and variances leads to an optimization problem that can be solved for
the abundances.

There are two versions of BCM proposed, a spectral version and a
spatial version with two kinds of optimization technique, quadratic
programming and Metropolis-Hastings sampling. We chose the spectral
version with quadratic programming, which minimizes the squared
difference between the two sources of means. The code is available
from Alina Zare's website. Comparing to the two NCMs above, a dis-
advantage of BCM is that it assumes that the bands are statistically
independent, which is usually not the case in practice.

3.2. Set-based methods

Set-based methods aim to minimize the following objective function
with respect to the abundances

= =
= =

µL y({ }) min , s. t. 0, 1nj
n

n
j

M

nj jk nj
j

M

nj
k 1 1

jK (6)

where {μjk : j=1,…,M,k=1,…,Kj} are the spectra in the library and
Kj is the number of spectra for the jth class, k=(k1,…,kM) and K is
again the Cartesian product of the M index sets {1,…,Kj}, j=1, …, M.
Fig. 6(a) shows how this objective function works, which can be seen as
finding a combination k that is closest to yn in terms of projection
distance. We reuse the notations in the GMM since theoretically, set-
based methods can be seen as a special case of GMM where each
spectrum in the library is a Gaussian component (see Appendix A for a
proof). In practice, the difficulty of minimizing (6) comes from enu-
merating all the possible combinations and different methods take a
different route to handle this.

3.2.1. Multiple endmember spectral mixture analysis
The most widely used set-based method could be MESMA (Roberts

et al., 1998). MESMA refers to each combination k as a model and an P-
endmember model means that there are only P nonzero αnj for each
pixel. From one-endmember model to two-endmember model and etc.,
MESMA gradually increases the number of endmembers in a model if

Fig. 6. Rationale behind set-based methods (a) and
GMM/NCM (b) for a simple example with 2 end-
member classes. The first one has no endmember
variability. The second one's variability is captured
by the ellipse. Set-based methods try to find some
representative spectra from the library such that
their linear combination is closest to the pixel spec-
trum. GMM/NCM tries to find a linear combination
of the centers such that the reconstruction error is in
line with the variation in the library. Given ground
truth {αnj}, the estimated abundances { }nj from
GMM/NCM can exactly recover it ( =/ /n n n n1 2 1 2)
while for set-based methods, / /n n n n1 2 1 2.
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more endmembers improve the error by a threshold. MESMA also
considers an additional shade endmember, which is set to be zero over
all the bands. An additional threshold is set to prevent the abundance of
shade from becoming too large.

The implementation was done by the original authors in IDL and
provided as an extension Viper Tool to ENVI. We used the same para-
meters as in (Wetherley et al., 2017), i.e. maximum RMSE 2.5%,
threshold RMSE 0.7%, abundances constrained between 0 and 1,
maximum shade threshold 80%, and a maximum of three endmembers
plus shade for each pixel. The obtained fractions were normalized to
give the final abundances.

3.2.2. Alternate angle minimization
Unlike MESMA that iteratively tries each combination, alternate

angle minimization (AAM) iteratively processes each endmember class
by picking an endmember for this class while fixing the rest end-
members (Heylen et al., 2016). The theory is that given some fixed
endmembers and the pixel spectrum, the reconstruction error of adding
an endmember is proportional to the sine of the angle of two projec-
tions. Hence, finding the endmember that leads to the least error is
equivalent to finding the one with the least angle. Since each search in
the library for an endmember class will lower the error, iterative search
over different classes will lead to an endmember set that minimizes the
error. The purpose of this strategy is to reduce the computational cost of
finding the best combination. It is shown that compared to the ex-
ponential time cost of MESMA, AAM has a linear time cost with respect
to the library size (Heylen et al., 2016). The code was implemented in
Matlab and downloaded from Rob Heylen’ s website.

Despite the same concept, AAM is different from MESMA in several
ways. First, it may not find the global minimum because of its alternate
optimization strategy. Second, it may find a pixel mixed by many
endmembers instead of maximum three. Finally, it does not include a
shade endmember to adjust for brightness differences between library
endmembers and measured spectra.

To summarize, a comparison of the characteristics of all the
methods is given in Table 2.

3.3. Validation strategy

Excluding MESMA, which was implemented in IDL, all methods
were implemented in Matlab. Due to ENVI license availability, MESMA
was run on a PC with Intel Core i7-2760QM CPU and 8 GB memory. The
other methods were run on a PC with Intel Core i7–3820 CPU and
64 GB memory.

We used three metrics to measure the differences between the es-
timated and reference fractions: mean absolute error (MAE), root mean
squared error (RMSE) and correlation coefficient (R). They were cal-
culated for each endmember class based on the 64 pairs of values. When
comparing different methods for unmixing quality, we will mainly re-
sort to MAE while also considering correlation coefficient and RMSE
since we can do statistical tests using MAE. For RMSE, only averaged
value over the 6 endmember classes is reported to save space. For R, it
should be accompanied by slope and intercept for additional informa-
tion. We visualize the results by scatter plots and Bland-Altman plots.

Scatter plot shows the estimated value in the y-axis against the re-
ference value in the x-axis. The slope and intercept are shown in the
parenthesis below the scatter plot. Bland-Altman plot shows the dif-
ference of the estimated value and the reference value against the later
(Bland and Altman, 1986). It also plots the mean of these differences
with twice the standard deviation as an interval. We can expect that the
error falls into this interval with 95% probability if the differences
follow a Gaussian distribution.

4. Results

4.1. Accuracy and efficiency

4.1.1. 16 m case
Table 3 shows the MAE and correlation coefficient for the 16m

images (see Supplementary Fig. S1 - S64 for abundance maps). Original
errors for 6 classes imply that GMM and AAM have the best accuracy,
followed by MESMA. The difference comes from the paved, roof and
tree classes, where GMM outperformed MESMA. In general, MESMA,
AAM, GMM and GMM-1 had similar accuracy. Among all the dis-
tribution-based methods, GMM has the best performance overall, with
fewest errors for NPV, paved and roof. Fig. 7 compares the estimated
total abundances to validated abundances for each material in scatter
plots. We can see that NCM sampling and BCM tend to ignore paved or
roof when they have presence. The set-based methods and GMM appear
to be better than the others.

We also summed up abundances for each category of GV, pervious
and impervious. The errors for them will be referred to as merged errors
and are also shown in Table 3. Merged errors show that GMM and AAM
retain their higher accuracy, with MESMA falling further behind due to
poor impervious accuracy. Since merged errors are differences between
summed up quantities of similar materials, such as paved and roof, we
may expect that merged errors will be less than the individual ones.
However, the average errors in Table 3 show the opposite, which means
that both of the similar materials are overestimated or underestimated.

We observe that though merging the abundances does not decrease
the error, it significantly increases the correlation coefficient. We
checked the scatter plot for merged abundances (see Supplementary
Fig. S66). Compared to the scatter plot in Fig. 7 where many abun-
dances are scattered close to the origin (e.g. turfgrass, roof, soil), the
merged abundances are more dispersed over the full range 0–1. Note
that correlation coefficients measure the linear correlation between two
random variables. When they are close to the origin, the linear corre-
lation will not be clear though the errors are small. Hence, we will
mainly compare the MAE while keeping R2 for reference.

Fig. 8 shows the Bland-Altman plots for the 16m data with dashed
lines indicating the 95% limits of agreement (also in the parenthesis
below). If we look at the boundary values of these intervals for the first
3 methods, the negative boundary for GMM is −0.22, which is slightly
better than MESMA (−0.27) and AAM (−0.23). The positive boundary
for GMM is 0.21, also slightly better than MESMA (0.26) and AAM
(0.25).

Table 2
Characteristics of the comparing methods.

Method MESMA AAM GMM GMM-1 NCM Sampling BCM

Physical Assumption LMM LMM LMM LMM LMM LMM
Input Library Reduced Reduced Full Full Full Full
Objective Function Reconstruction error Reconstruction error GMM likelihood NCM likelihood NCM likelihood Moments matching
Operating Dimension 164 164 10 10 164 164
Optimization Exhaustive search Block coordinate descent EM EM Metropolis Hasting Quadratic programming
Maximal Endmembers Per Pixel 3 Unlimited Unlimited Unlimited Unlimited Unlimited
Inherent Shade Endmember Yes No No No No No
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4.1.2. 4 m case
The error statistics of 4m data are shown in Table 4 (see Supple-

mentary Fig. S1 - S64 for abundance maps). MESMA and GMM are the
most accurate, with AAM following. Though MESMA and AAM take the
same reduce library and aim for the same goal, they have some dif-
ferences as shown in Table 2. On the other hand, AAM and GMM both
place no limit on the number of endmembers nor use a shade end-
member. Hence, the slightly better performance of GMM over AAM is
more interesting since they use the same assumption. Similar to the
16m case, merging the abundances in general does not decrease the
error, except for NCM sampling. We observe that NCM sampling tends
to have large errors for paved and roof. However, the sum of paved and
roof, i.e. impervious, has a much lower error. This suggests that NCM
sampling is confused by these two similar endmember classes.

Fig. 9 shows the Bland-Altman plots for this data (see Supplemen-
tary Fig. S65 for the scatter plots). Similar to the statistics in Table 3,
GMM and the two set-based methods seem to work better. The other 3
methods all have some boundary value exceeding 0.25 (in absolute
value). The advantage over them is mainly on paved and roof. Recall
the large variation and overlap in these two endmember classes in the
original library in Fig. 3, unimodal distributions may have confusion
over them which leads to low accuracy. This time MESMA has the best
negative boundary value (−0.18) compared to AAM (−0.25) and GMM
(−0.20). It also have the best positive boundary value (0.15). Hence we
can expect MESMA overestimates/underestimates the abundance by at
most 0.18 with 95% probability. For comparison, this statistics is 0.2 for
GMM and 0.25 for AAM.

4.1.3. Test of difference significance
We used paired-sample t-test on the mean MAEs over all classes per

image (64 samples) to determine if the difference is significant for two
methods. Before proceeding, we need to verify that the error samples
come from a Gaussian distribution. This can be visualized in a quantile-
quantile plot, where the quantiles of the samples are plotted against the
quantiles from the standard Normal distribution. If the pairs of quan-
tiles fit a straight line, it means that the samples has a Gaussian dis-
tribution. Fig. 10 shows the quantile-quantile plots for all the methods
on the 16m data. We see that except some outliers, most of them fit the
straight line well. Another more quantitative way is to use the chi-
square goodness-of-fit test. It returns a test decision for the null hy-
pothesis that the samples are from a Gaussian distribution with mean
and variance estimated from the samples. If the p-value is less than a
significance level (e.g. p<0.05), the null hypothesis is rejected, i.e.
they are not from a Gaussian distribution. The p-values are shown

below the plots in Fig. 10. We see that they are all above 0.05. For the
4m data, the p-values are 0.16, 0.21, 0.14, 0.16, 0.31, 0.34 respec-
tively, suggesting a weak evidence to reject the null hypothesis.

In the t-test for two sources of errors, we have a null hypothesis that
the error samples come from normal distributions with equal means.
We say two results are significantly different if the null hypothesis is
rejected at the 5% significance level (p<0.05). Table 5 shows the p-
values for pairwise comparison. We see that in the 16m case, MESMA,
AAM and GMM all have no significant difference between each other.
Given the errors in Table 3, the ranking in terms of accuracy is MEMSA
≈ AAM ≈ GMM>GMM-1>BCM>NCM sampling. In the 4m case,
only GMM-1 and AAM have no significant difference, hence the ranking
is MESMA > GMM>GMM-1 ≈ AAM>BCM>NCM sampling
(Table 4).

4.1.4. Efficiency
Since they were run on different machines with different im-

plementation (MESMA and NCM sampling have multiple threads), the
time costs are not for comparison, but for reference. In general, all the
methods run in a few hours. The fastest method is GMM-1, which is our
implemented GMM with only one combination. NCM sampling turns
out to be the slowest one. It is expected since sampling algorithms are
usually slower than deterministic algorithms. The time costs on the 4m
dataset are usually more than 10 times slower than those on the 16m
dataset. This is because the image size of the former is 16–19 times
larger than the latter and the library size is also larger. The least gap
comes from GMM because of a changed TCVIC leading to a significantly
less number of combinations. Heylen et al. (2016) showed that with the
same implementation AAM was much faster than MESMA, but here the
result is converse. One reason is that the parameters of MESMA force it
to pick at most 3 endmembers for a pixel instead of all the combina-
tions. Also, multi-threading and implementation techniques impact the
real world time costs significantly.

4.2. Extend to semi-realistic images

We extended the experiments to semi-realistic images to check if the
method or library reduction was overfitted to this particular dataset. To
this end, we tested the methods on another batch of synthetic images
generated by the library spectra. Since all the methods assumed that a
pixel was a linear combination of endmember spectra from the library,
the creation of this synthetic dataset follows this assumption.

We created this dataset following the literature that emphasizes
realistic simulation (Gao et al., 2013; Hao et al., 2015). For each ROI in

Table 3
Comparison of error and correlation coefficient for the 16m images.a, b, c, d

a The average RMSEs in the individual case for the 6 methods are 0.1, 0.092, 0.093, 0.103, 0.184, 0.133 respectively.
b The average RMSEs in the merged case for the 6 methods are 0.117, 0.098, 0.097, 0.104, 0.226, 0.174 respectively.
c The entries in red denote the best two results in each category.
d The running time on all the images for the 6 methods is 18, 27, 83, 0.3, 220, 101min respectively.
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the original dataset, we randomly sampled spectra from the full library
with the number of spectra for each class being the same as that in the
reduced library. Then we used AAM to unmix the pixels with these
sampled spectra. The obtained abundances were sorted to keep the
largest three while the other were set to 0, and rescaled such that their
summation was one. This is to conform with the assumption of MESMA.
The endmembers and abundances were combined according to the
LMM to generate synthetic pixels. In this way, we can create a dataset
where the endmembers are randomly picked from the full library, and
the spatial distribution of abundances looks similar to the original one.
Fig. 11 shows all the 4m synthetic images generated in this way.
Comparing it with Fig. 1, we can see its similarity. But inherently, the
synthetic images follow exactly the LMM with at most 3 endmembers
for each pixel and they are randomly picked from the full library.

We validated all the methods on this simulated dataset. Table 6
shows the unmixing results on this dataset. We see that GMM and NCM
sampling turn out to be the best two methods. The superior

performance of NCM sampling contrasts sharply to its worst result in
Table 3. Since we evaluate the difference between total abundances in
an area for a class, it is possible that the relatively large pixel abun-
dance error is mitigated by averaging them. This is more possible for
sampling algorithms because statistically they tend to sample values
around the expected value.

Compared to the superior results from set-based methods in Section
4.1, the advantage of distribution-based methods becomes obvious.
Since the endmembers were randomly sampled from the big library,
set-based methods showed insufficiency to unmix the pixels using a
reduced library derived from another dataset. It is possible that a dif-
ferent reduced library based on this simulated dataset may lead to
better results for set-based methods. However, that means, to maximize
the performance, they need repetitive library reduction when applied to
different sites.
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Fig. 7. Scatter plots of 64 abundance values in 16m for the ground truth (x-axis) and the estimated (y-axis). The parenthesis below the plot contains the slope and
intercept.
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5. Discussion

5.1. Sources of errors and difficulty in urban application

The reported errors come from three sources: dataset, model and
method. First, the dataset was well developed on various scenes, but the
validated abundances have intrinsic errors from the same UTM co-
ordinates that were applied to the two kinds of images for region cor-
respondence. Because these airborne images are collected from an un-
stable process, the coordinates, though spatially calibrated, may still
not correspond to the precise locations accurately. Using a polygon and
validating its total abundances mitigate this effect, but still the region
for reference could have a small shift compared to the region for un-
mixing. This is more likely in the 16m data, which may explain partly
the larger overall errors in this data. This also supports our choice of
MAE as the error measure over RMSE because the L2 norm of RMSE is

more sensitive to outliers than the L1 norm of MAE. A possible route to
reduce this effect is to find a pixel-wise correspondence by image-based
co-registration (Zhou et al., 2017b).

Second, the LMM may not hold in real datasets even by assuming
endmember variability. The LMM assumption comes from the check-
erboard interpretation, where the area of each material contributes to
the formation as coefficients. This holds when the areas of different
materials are segregated and there is no interaction between different
materials. If the spatial structure is not flat such that the light ray un-
dergoes multiple reflections among these materials, simple linear
mixing is violated and a more complicated nonlinear model may be
used (Ray and Murray, 1996). Allowing the endmember spectra to vary
per pixel based on a proper spectral library could mitigate this effect.
But the modeling error still exists to some extent and it is common in
urban applications where buildings and tree canopies easily create
multiple reflections.
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Fig. 8. Bland-Altman plots of 64 abundance values for the 16m data. The x-axis is the ground truth. The y-axis is the difference between the estimated value and the
ground truth. The solid line is the mean of these differences while the dashed lines show the mean plus (minus) twice the standard deviation of these differences. The
parenthesis below the plot contains the 95% limits of agreement. Dots outside the axes are not shown.
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Moreover, the application of LMM is also undermined by the spec-
tral ambiguity among different urban categories (as seen in Fig. 3). For
example, the endmember classes of roof and paved sometimes use the
same actual material, such as bitumen. Also, shadow along buildings
can reduce the spectral reflectance when the coarse pixels contain the
area. These shadowed roof and paved materials have further resem-
blance to shadowed trees. On the other hand, cars with large albedo on
the road can increase the reflectance of paved, making it similar to
some roof material. In the Results section, the poor performance on roof
and paved from unimodal distribution-based methods could be caused
by this library overlap. Note that its influence on the set-based methods
is not that large due to spectral separability from the reduced library.
Since this ambiguity reflects the fact that different classes share some
common spectral signatures, we kept it for distribution-based methods.

Lastly, a method has intrinsic errors from itself. For set-based
methods, since they can explore the small combination space to find the
global optimal solution, the errors are more likely to be from its library
reduction scheme. Hence it is critical to find a reduced subset that
conforms to the LMM on the unmixing pixels. As the dataset grows
large, it is more and more difficult to find a reduced subset that is
suitable for increasing pixels. For distribution-based methods, the pro-
blem is solved by iterative numerical algorithms, thus they may only
approach a local optimal solution in the continuous solution space.
They also depend on the library as they assume the endmembers follow
a distribution on the library. If the distribution does not reflect the
actual endmembers in the image, bias will exist in the estimation.
Conceptually, this issue is equivalent to the library reduction problem
in set-based methods if we view the latter as a special case of GMM.

5.2. Comparison with respect to spatial resolution

The 16m dataset has large overall errors compared to the 4m
counterpart. This phenomenon is commonly seen in the previous re-
search (Okujeni et al., 2015, 2013; Wetherley et al., 2017). There are
many reasons behind it. One is the possible large co-registration error in
the 16m data. Another reason is that a large polygon size in terms of
pixel could mitigate co-registration error and average overestimated
and underestimated abundances (Powell et al., 2007). Since the phy-
sical polygon size is 180m by 180m (11 or 12 pixels per side for 16m
and 46 or 50 pixels per side for 4m), the more pixels for 4m will lead to
less error. Finally, a large pixel size implies complicated mixing invol-
ving more endmembers, which makes unmixing more difficult. A
common route to evaluate how many endmembers exist in a pixel is to
count the number of abundances greater than 0, which is called pixel

complexity (C ). Table 7 shows the average pixel complexity for each
method. According to MESMA, 24% pixels comprise one endmember,
44% pixels comprise two endmembers for 16m data, while for 4m data
the proportions are 54% and 10% respectively. Considering this effect,
the comparison within the paper or beyond will focus on similar spatial
resolutions.

A problem with the calculation of pixel complexity is that if a
method has abundances close to zero but not exactly equal to zero, the
complexity will be quite different from another with similar abun-
dances and exactly zero values. In other words, a slight perturbation to
the abundances from MESMA will lead to a very different complexity
though the changes are small. This is seen in Table 7 where the other
methods all have a large pixel complexity since they use numerical
algorithms without any constraint on the maximal number of end-
members. To measure the pixel composition more consistently, we
propose to use another measure, diversity (D ), which is commonly used
in information theory, ecology and physics (Jost, 2006). The definition
of diversity is the exponential of the entropy of the abundance dis-
tribution, exp(∑jαnj log αnj). It connection to complexity is that if the
abundances are equally distributed, then the diversity is equal to the
number of endmembers (nonzero abundances). The advantage of di-
versity is that when the abundances transition from M−1 equally
distributed nonzero values to M equally distributed nonzero values, the
transition of diversity is a smooth curve connecting M−1 and M.
Hence, it is more suitable for a wide range of methods. Table 7 also
shows the diversity of different results. We see that in average, a pixel
contains 2–3 endmembers for most of the methods. The similar values
on pixel diversity and complexity from MESMA suggest that the new
measure has a similar interpretation of the pixel composition. Under
this measure, the interpretation from distribution-based methods is si-
milar to MESMA.

5.3. Comparison between synthetic and real datasets

Comparing the real dataset and the synthetic dataset, the accuracy
difference for MESMA is quite small compared to the other methods.
MESMA achieves average MAE 0.074 (real data) versus 0.058 (syn-
thetic data) for the 16m case, the same 0.046 for the 4m case re-
spectively. Considering the source of error analysis in Section 5.1, the
synthetic dataset eliminates errors introduced by the LMM assumption
and the co-registration error. No improvement for the 4m data from
MESMA suggests an underlying flaw to the current 2-step unmixing
workflow. That is, the reduced library may be overfitted to the specific
unmixing dataset. This is very likely as ICR uses MESMA as a classifier

Table 4
Comparison of error and correlation coefficient for the 4m images.a, b, c, d

a The average RMSEs in the individual case for the 6 methods are 0.064, 0.092, 0.074, 0.082, 0.123, 0.113 respectively.
b The average RMSEs in the merged case for the 6 methods are 0.063, 0.107, 0.075, 0.08, 0.106, 0.142 respectively.
c The entries in red denote the best two results in each category.
d The running time on all the images for the 6 methods is 165, 499, 213, 8, 3153, 1347min respectively.
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in the reduction procedure. The strongest evidence is that for all the
other methods, the errors are reduced in the synthetic case. For ex-
ample, this comparison for AAM is MAE 0.069 vs. 0.058 (16m), 0.065
vs. 0.047 (4m), for GMM is MAE 0.069 vs. 0.042 (16m), 0.056 vs.
0.038 (4m), for GMM-1 is MAE 0.075 vs. 0.062 (16m), 0.063 vs. 0.049
(4m).

Another evidence is that in the real data experiments, MESMA and
AAM have no significant difference in the 16m data (p=0.16) while
MESMA is significantly better than AAM in the 4m data (MAE=0.046
vs. MAE=0.065, p=8e−6). Recall that AAM also uses the reduced
library and tries to find the optimal combination. Its difference com-
pared to MESMA lies in the details, including no inherent shade end-
member, a different optimization approach, and no constraint on the
maximal number of endmembers in the model. These are all possible
reasons that may lead to the success of MESMA in the 4m case.
However, we may also explain that the 4m reduced library is especially
designed to work best under MESMA for the specific 4m data. This

conjecture is supported by the additional fact that in the synthetic data
experiment, MESMA and AAM have similar accuracy for both scales
data (MAE=0.058 vs. MAE=0.058 for 16m, MAE=0.046 vs.
MAE=0.047 for 4m). We also find no significant difference between
them on this dataset (p=0.89 for 16m and p=0.59 for 4m). This
suggests that MESMA and AAM may work equally well when we change
to another batch of images given the same reduced library.

Based on this analysis, the current unmixing accuracy is highly
dependent on the reduced library. This shifts the focus from the actual
unmixing methodology to finding a reduced library that fits the un-
mixing method. Given a universal spectral library, a direct consequence
is that when we apply unmixing to different cities, we need to re-
peatedly reduce the large library to ensure good performance. This
complicates the process and also adds uncertainty to the results, espe-
cially for reduction methods that require manual guidance.
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Fig. 9. Bland-Altman plots of 64 abundance values for the 4m data. The parenthesis below the plot contains the 95% limits of agreement. Dots outside the axes are
not shown.
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5.4. Comparison with respect to different methods

Among the set-based methods, MESMA is slightly inferior to AAM
for the 16m data (MAE=0.074 vs. MAE=0.069, p=0.16) while
significantly better for the 4m data (MAE=0.046 vs. MAE=0.065,
p=8e−6). Hence MESMA can represent the best performance for set-
based methods in this paper. Among the distribution-based methods,
GMM performed best for both the 16m and 4m data, with the least
average error (MAE=0.069 for 16m, MAE=0.056 for 4m). The
following best method is GMM-1 (MAE=0.075 for 16m and
MAE=0.063 for 4m), which is our NCM with the same implementa-
tion as GMM. The difference between GMM and GMM-1 is significant
for both scales data (p<0.05). For the remaining two methods, BCM
has better accuracy than NCM sampling, while their errors are notice-
able larger than the former two (p<0.05 when against them on both
real data). It is unsurprising to see that GMM has a superior perfor-
mance as the other distribution-based methods can not model multiple
modes in the distribution of the library spectra (Zhou et al., 2018)

(GMM vs. NCM/BCM is analogous to MESMA vs. traditional unmixing
with a fixed endmember combination). We will use GMM to represent
the best method for distribution-based methods here.

Comparing the two exemplary methods on the real dataset, GMM is
slightly better than MESMA for the 16m data (MAE=0.069 vs.
MAE=0.074, p=0.25) while inferior for the 4m data (MAE=0.056
vs. MAE=0.046, p=7e−5). At first glance we may conclude that
GMM and MESMA work equally well for the 16m data while MESMA is
better at handling high-resolution data. However, Table 4 also shows
that GMM is better than AAM for the 4m data (MAE=0.056 vs.
MAE=0.065, p=0.02). According to the analysis in Section 5.3, the
reduced library may be overfitted to MESMA, the error from MESMA
could be the extreme limit for this data since the error could not be
reduced in the ideal case (synthetic data). A further hypothesis suggests
that MESMA and AAM may work equally well on other datasets. Under
this assumption, the superior performance of GMM over AAM for 4m
implies an opposite direction to our initial conclusion, i.e. GMM may
have better unmixing capability for fine scale data than MESMA with a
routinely reduced library. Whether this argument is true depends on
many conditions (library reduction, parameter tuning, etc.), but the
initial attempt on the synthetic dataset has shown this trend
(MAE=0.042 vs. MAE=0.058 and p=2e−4 for 16m,
MAE=0.038 vs. MAE=0.046 and p=0.01 for 4m).

5.5. Comparison with results reported in other literature

Here we give some remarks on the comparison with results reported
in other work. First, the results of MESMA are slightly different from
those reported in (Wetherley et al., 2017), which used a similar dataset.
No MAE was reported in (Wetherley et al., 2017), but they calculated
the average R2 values, which are 0.642 (individual) and 0.867 (merged)
for 18m, 0.811 (individual) and 0.923 (merged) for 4m. Based on the
small difference in R2 value by comparing them to Tables 3 and 4
(R2= 0.660 and 0.836 for 16m, R2= 0.818 and 0.941 for 4m), we
conclude that the two MESMAs have similar results hence the

Fig. 10. Quantile-quantile plots for all the methods on the 16m data.

Table 5
P-values for significance of difference between any two methods.a

p-value Method MESMA AAM GMM GMM-1 NCM BCM

16m MESMA – 0.16 0.25 0.95 2e-12 7e-6
AAM 0.16 – 0.98 0.07 4e-12 3e-7
GMM 0.25 0.98 – 0.04 5e-11 3e-7
GMM-1 0.95 0.07 0.04 – 3e-9 4e-5
NCM 2e-12 4e-12 5e-11 3e-9 – 2e-5
BCM 7e-6 3e-7 3e-7 4e-5 2e-5 –

4m MESMA – 8e-6 7e-5 3e-8 3e-17 2e-14
AAM 8e-6 – 0.02 0.57 2e-7 1e-4
GMM 7e-5 0.02 – 1e-4 3e-14 2e-12
GMM-1 3e-8 0.57 1e-4 – 7e-10 1e-7
NCM 3e-17 2e-7 3e-14 7e-10 – 5e-4
BCM 2e-14 1e-4 2e-12 1e-7 5e-4 –

a The entries in bold denote no significant difference between the two
comparing methods (P > 0.05).
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comparison here can be extended to that work. Note that we used
Matlab to extract the polygon ROIs directly from the original images
while they resampled the images to a uniform spatial resolution of
18m. Additionally, that study used 178 spectral bands in contrast to
164 bands used here. The less bands are derived from removing all the
bad bands from all the validation polygons and spectral libraries.

Second, the set-based methods can achieve better accuracy if the
reduced library is well constructed such that it contains potential
spectra that conform to the LMM for each pixel. Wetherley et al., (2017)
showed that when the original library contained spectra from different
resolutions, the results were better (R2= 0.760 for 18m, R2= 0.837
for 4m) than those from single-resolution libraries. In (Degerickx et al.,
2017), unmixing was performed on Berlin images with three sources of
spectral library, Berlin, Bonn, Brussels. It turns out that when using
Berlin spectra mixed with a small portion of non-Berlin spectra, the
result is slightly better than using pure Berlin spectra (RMSE=0.13 vs
RMSE=0.14). This is expected as the larger the original library, the
more possible that we may find a subset that fits the dataset under the
LMM assumption.

Finally, the accuracy of GMM exceeds other work with different
datasets in terms of error. In (Okujeni et al., 2013), support vector

regression (SVR) was used with synthetically generated training data to
unmix hyperspectral images over Berlin, which have 92 polygons with
128 bands ranging from 440 to 2500 nm and 3.6m spatial resolution.
The reported accuracy for SVR is MAE=0.084, 0.128, 0.064, 0.068,
R2= 0.86, 0.58, 0.81, 0.85 for roof, pavement, grass, tree respectively.
In comparison, GMM for 4m data in this study has accuracy
MAE=0.069, 0.061, 0.036, 0.043, R2= 0.46, 0.83, 0.81, 0.93 for the
same materials. The same SVR framework is applied to 80 polygons
with 9m spatial resolution in a further study (Okujeni et al., 2015). The
reported accuracy is MAE=0.107, 0.203, 0.063, 0.146, R2= 0.74,
0.73, 0.88, 0.70 for roof, pavement, vegetation and tree respectively.
Compared to the 16m results in Table 1, our error for GMM is less

Fig. 11. Simulated 4m ROI images. They are very similar to the real images in Fig. 1.

Table 6
Comparison of error and correlation coefficient for the synthetic images.a, b, c

a The average RMSEs in 16m for the 6 methods are 0.080, 0.077, 0.060, 0.084, 0.031, 0.12 respectively.
b The average RMSEs in 4m for the 6 methods are 0.065, 0.063, 0.054, 0.066, 0.039, 0.071 respectively.
c The entries in red denote the best two results in each category.

Table 7
Average pixel complexity (C) and diversity (D).

MESMA AAM GMM GMM-1 NCM Sampling BCM

C 16m 2.07 4.13 3.90 3.53 5.88 3.26
4m 1.80 3.86 3.90 3.94 5.90 2.84

D 16m 1.85 2.94 2.57 2.28 2.33 2.39
4m 1.56 2.45 2.35 2.24 2.54 2.15
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(MAE=0.078, 0.081, 0.045, 0.076) though the correlation coefficient
is lower (R2= 0.279,0.691,0.632,0.798). In a recent work focusing on
discovering a better library reduction algorithm (72 polygons with 9m
spatial resolution), the best results using MESMA and mixed spectral
libraries have RMSE=0.11, 0.17, 0.12, 0.16, 0.1 for roof, pavement,
tree, grass, soil respectively (Degerickx et al., 2017). The corresponding
RMSEs from GMM in 16m are 0.096, 0.102, 0.095, 0.072, 0.092. Note
that the R2 values are highly dependent on the dispersion of the
abundance values. If we only look at the error comparison, GMM turns
out to be better in all cases. Note that the performance of MESMA in our
study is comparable to GMM on coarse-scale data and even slightly
better on fine-scale data. Comparing it to MESMA in other work, it
further verifies our previous conjecture that the reduced library is
overfitted to our dataset and GMM may be better than MESMA with a
routinely reduced library.

5.6. Implications for a universal spectral library

Distribution-based methods have profound applications in terms of
a universal spectral library. With the existence of spectral libraries from
different sources, a universal spectral library can be established by
combining these spectra from different locations and seasons. Given
such a large spectral library, GMM is ideal to encode the library without
losing much information. According to the implementation of GMM, it
works by initializing the abundances by finding the combination of
Gaussian centers that matches the pixel, followed by an EM algorithm
that refines the abundances (Zhou et al., 2018). This procedure is si-
milar to the current 2-step workflow that first reduces the library, then
uses MESMA for unmixing, with the Gaussian centers corresponding to
the reduced library, the initialized abundances corresponding to the
MESMA unmixed abundances, except an additional abundance refine-
ment step. However, conceptually, GMM uses a single model to describe
the unmixing task, and unifies the current workflow in the im-
plementation.

Applying GMM to a universal spectral library is straightforward.
The simplest way is to use a separate Gaussian component for the
spectra from each source, though the error will probably be larger than
using the spectra from the same location with a similar spatial resolu-
tion. The advantage over the current approach lies in the final EM re-
finement. Since library information is encoded in the distribution
parameters, calculation of the abundances is not merely determined by
the representing spectra from the library (Gaussian centers), but also by
the covariance matrices, which encode how spectra change in the li-
brary (Fig. 6). This additional information is critical to the success of
GMM over AAM in the 4m data, since GMM uses the full library in-
formation while AAM uses a reduced library designed for MESMA.
Another advantage of applying GMM is that it simplifies the library
reduction procedure for each dataset (if finding the Gaussian centers is
a kind of library reduction), making it become picking related spectra
and estimating GMM parameters, the latter of which is a well studied
problem (McLachlan and Rathnayake, 2014).

Finally, we discuss some empirical criteria for picking related
spectra in a large spectral library. We used the 4m library on the 16m
data for MESMA and GMM. But the results are as good as using the
same resolution library, both achieving average MAE 0.099 and R2

below 0.6. Note that the collection interval between the two kinds of
data is only about 1 week, but the 16m data were collected by AVIRIS
from 20 km above the ground while the 4m data were collected by
AVIRIS-NG from a 5 km altitude. A similar result is found elsewhere
(Degerickx et al., 2017; Wetherley et al., 2017). Especially, in
(Degerickx et al., 2017) even if the mixed library comes from several
sources, as long as it does not contain the original location related
spectra, the result is worse than using a single library. This implies that
when applying a universal spectral library, the spectra related to the
task (same location, same spatial resolution, similar time) should be
selected as a major source.

5.7. Significance for environmental applications

Before conclusion, we discuss the limitations and significance in
terms of higher level environmental applications. Note that hyper-
spectral imagery is not the only source to obtain land cover fractions
(Zhang and Weng, 2016). It has following limitations. First, hyper-
spectral imagery typically has a large number of mixed pixels from a
variety of different surface materials. Second, the spectral ambiguity
between land cover types often confuses the analyzing method. This
ambiguity comes from both the intra-class variability due to changing
illumination condition, shadow and object composition, and inter-class
similarity due to the same material applied to different surface types.
Third, vertical structures in urban areas cause problems such as ob-
scured objects and complex physical models (Gastellu-Etchegorry et al.,
2015). However, these limitations apply more or less to all remote
sensing techniques.

In comparison, hyperspectral imagery still has an advantage of a
wide spectral range and a high resolution that provide additional de-
tails to the observed surface, which leads to many urban environmental
applications (Van der Linden et al., 2019), including land cover map-
ping (Roberts et al., 1998), assessing vegetation condition (Degerickx
et al., 2018), modeling surface temperature (Deng and Wu, 2013).
These applications are associated with more significant environmental
problems such as global climate change (Feddema et al., 2005; Kalnay
and Cai, 2003). Hence, an imaging spectrometer has become an im-
portant instrument for monitoring environment and climate change, as
mentioned in the 2007 National Research Council (NRC) Decadal
Survey: “A hyperspectral sensor combined with a multispectral thermal
sensor in low Earth orbit (LEO) is part of an integrated mission concept
described in Parts I and II that is relevant to several panels, especially
the climate variability panel” (Board et al., 2007). With the advent of
orbital spectrometers (e.g. HyspIRI, EnMAP) that feature global area
coverage and high temporal frequency, real-time monitoring of urban
environment using hyperspectral imagery is becoming a reality (Lee
et al., 2015; Guanter et al., 2015).

Currently, extensive works have been done by using high-resolution
(less than 4m) airborne hyperspectral images for classification of urban
land cover types (Demarchi et al., 2014; Franke et al., 2009; Melgani
and Bruzzone, 2004). In this case, a high spatial resolution is critical to
success (Herold et al., 2003). However, even at a 4m spatial resolution,
half of the pixels may consist of two or more endmembers (Wetherley
et al., 2017). Coarse-scale hyperspectral images further increase the
number of mixed pixels as well as the number of endmembers in each
pixel. This brings many challenges to the future of orbital spectrometers
since their spatial resolution is even worse than airborne data (e.g.
30m). This makes unmixing an important preprocessing step to not
only existing, but also future spectrometer data.

Considering the amount of data generated in the future, an efficient
way to unmix the hyperspectral imagery repeatedly is to use MESMA
with a universal spectral library. The accuracy improvement of GMM
compared to MESMA may be small according to Tables 3 and 4.
However, the results of MESMA in this work are not repeatable on
continuous processing of spaceborne imagery since careful human in-
tervention is required to achieve them (see Section 2.2). Hence, the first
and direct significance of distribution-based methods is that they fea-
ture a fully automatic processing pipeline where the computational
complexity does not scale with the library size. This benefit is especially
useful for orbital spectrometers. Since they are collecting data end-
lessly, GMM enables fully automatic real-time analysis of these data.

Besides the stable performance and computational efficiency, there
is another implication of GMM. In practice, for accurate land cover
mapping, hyperspectral imagery may not be used alone. Instead, mul-
tiple sources can be combined to improve the accuracy. One source is
the multispectral image, which can be combined with a hyperspectral
image to produce a spatially and spectrally high-resolution image, a.k.a.
hyperspectral-multispectral fusion (Zhou et al., 2020; Yokoya et al.,
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2017). The combined high-resolution pixels can be classified to provide
accurate mapping of urban areas. Another source is the lidar data,
which provides height information above the ground. Combining lidar
and hyperspectral images has been shown to improve the performance
(Degerickx et al., 2019; Chen et al., 2018; Priem and Canters, 2016).
Despite these new directions that may be more useful in practice, they
still require the hyperspectral imagery and the underlying assumption is
still the LMM. For example, many hyperspectral-multispectral fusion
approaches rely on the LMM with a fixed set of endmembers (Zhukov
et al., 1999; Yokoya et al., 2012; Wei et al., 2015), combining lidar and
hyperspectral images for land cover mapping still relies on MESMA
(Degerickx et al., 2019). Hence, if GMM provides more stable and ac-
curate unmixing results, these new directions may also benefit by re-
placing the LMM with the probabilistic formulation. For example,
height information derived from lidar data serves as an endmember
model constraint and a fraction constrain for MESMA in Degerickx et al.
(2019). The same constraints can be unified as an abundance constraint
and replace the positivity and sum-to-one constraint in Eq. (3) for
GMM. Therefore, the significance of this work is not restricted to im-
provement in terms of unmixing accuracy, but also includes replace-
ment of the underpinning of many hyperspectral imagery-based appli-
cations.

6. Conclusion

This study aims to compare the unmixing capabilities of distribu-
tion-based methods and set-based methods by applying them on a
comprehensive dataset consisting of 128 images across 2 scales, with
reference abundances obtained by inspecting high-resolution images.
The results show that with large libraries, the best distribution-based
method (GMM) achieves comparable accuracy to MESMA on the 16m
data without need for library reduction (MAE=0.069 vs.
MAE=0.074, p=0.25). For the 4m data, though GMM is not as ac-
curate as MESMA (MAE=0.056 vs. MAE=0.046, p=7e−5), it is
better than another set-based method AAM that claims to be a re-im-
plementation of MESMA (MAE=0.056 vs. MAE=0.065, p=0.02).
Moreover, further experiments on a synthetic simulation imply that the

reduced library may be overfitted to the real data for MESMA and GMM
is significantly better than both the set-based methods. These results
suggest that GMM is at least comparable to set-based methods on
coarse-scale data and potentially more stable across datasets.
Considering that land cover mapping using fine-scale data can be
achieved by classification instead of unmixing, the comparison results
on coarse-scale data could be more significant in practice.

To summarize, distribution-based methods have the benefit of
keeping the variation patterns in the spectral library. Since they keep
more information from the library, theoretically they should work
better. In practice, for a small dataset, we can always derive a subset
from the library that fits the unmixing task. Due to simplicity of the set-
based methods, they can behave very well given this reduced library.
However, the derivation of this subset requires too much labor work
and the derived reduced library is also hard to be generalized to other
datasets. This study confirms that the actual performance of the dis-
tribution-based method GMM is in line with its theoretical advantage.
Hence, it could have more potential for unmixing different sites with a
large spectral library and facilitate the automatic processing of a wealth
of spaceborne imaging spectroscopy data in the future.
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Appendix A. Relation between MESMA and GMM

The connection between set-based methods and distribution-based methods is that the former can be seen as a special case of the latter.
Specifically, given a library of spectra {μjk : j=1,…,M,k=1,…,Kj}, the minimization problem in Eq. (6) can be seen as a special case of GMM by

choosing = = ( )µp m m( | ) | ,nj j k
K

jk nj jk jk1
j N where πjk=1/Kj, ∑jk= ϵI with ϵ→0, and =p Cn n 0 I( | ) ( | , )n n0 N where C is a large con-

stant, e.g. 1e4. Intuitively, it means that each spectrum in the library is a Gaussian component, each component has an equal probability to be
chosen, and the center of the component is always chosen as mnj. To see why this leads to (6), recall that the MLE objective function becomes
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Around the optimal {αnj}, the objective function will be dominated by the k that maximizes ( )µy | ,n n nk k
N since the exponential term

{ }µ µy yexp ( ) ( )T1
2

1
in the Gaussian density function will decay fast given a small covariance matrix, which makes the contribution from

the other k’s negligible and the summation operator become the maximum operator. Then the objective function becomes
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with the constant term =N log j
M

K1
1

j
ignored.

Moving the logarithm operator inside, ( )µylog | ,n n nk k
N can be expanded (up to a constant term) as
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which makes Eq. (A.1) almost equivalent to (6) except the covariance term. Note that ∑j=1
Mαnj2 is bounded (1/M≤∑j=1

Mαnj2≤ 1) hence is neg-
ligible to a large C. Replacing ∑j=1

Mαnj2+ Cwith C and ( )µymax log | ,n n nk k k
N with ( )µymin log | ,n n nk k k

N , Eq. (A.1) becomes a scaled
version of (6) plus some constant terms and the original maximization problem becomes a minimization problem.

Appendix B. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.rse.2020.111857.
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